

EL7-EC Series AC Servo Drive

User Manual

Foreword

Thank you for purchasing Leadshine EL7-EC series AC Servo drives. This manual will provide information on the EL7-EC series servo products regarding product safety & specifications, installations & wiring, tuning & problem diagnostics.

Please contact us at tech@leadshine.com if you need further technical support.

Incorrect operation may cause unexpected accident, please read this manual carefully before using product.

- ♦ We reserve the right to modify equipment and documentation without prior notice.
- We won't undertake any responsibility with any customer's modification of product and the warranty of product will be canceled at the same time.

Safety Precautions

Please read the safety instructions carefully before using the products and pay attention to the safety signs.

Danger	Might incur death or serious injury
Caution	Might cause injury to operating personals or damage to equipment
Warning	Might cause damage to equipment
4	High voltage. Might cause electrocution to personals in contact
<u> </u>	Hot surface. Do not touch
	Protective Earth

Safety instructions

- The design of the product is not to be used in mechanical system which may incur health hazard.
- ✓ Users should be aware of the product safety precautions during design and
 installations of the equipment to prevent any unwanted accident.

Upon receiving

- ✓ The use of damaged or faulty product(s) is prohibited.
- Please refer to item checklist. If the labels don't match, please do not install.

2

Transportation

- ✓ Please provide storage and transportation under protected conditions.
- ✓ Do not stack the products too high up to prevent toppling.
- √ The product should be packaged properly during transportation,
- ✓ Do not hold the product by the cable, motor shaft or encoder while transporting it.
- ✓ The product should be protected from external forces and shock.

Installation

Servo drive and Motor:

- ✓ Do not install around combustibles to prevent fire hazard.
- ✓ Avoid vibration and impact.
- ✓ Do not install products that are damaged or incomplete.

Servo drive:

- ✓ Please install in electrical cabinet with sufficient protection from outside elements.
- ✓ Reserve sufficient gap as per the installation guide.
- ✓ Make sure to have good heat sinking.
- ✓ Avoid dust, corrosive gas, conductive object or fluid and combustibles.

Servo Motor:

- ✓ Make sure installation is tight to prevent it from loosening.
- ✓ Prevent fluid from leaking into motor and encoder.
- ✓ Protect motor from impact to avoid damaging encoder.
- Motor shaft should not bear the load beyond the limits as specified.

Wiring

- ✓ Participate installation personals should have sufficient training in product installation safety.
- ✓ Please power off and wait for 10 minutes to make sure a full discharge of electricity.
- ✓ Servo drive and motor must be connected to ground.
- ✓ Connect the cables only after servo drive motor installed correctly
- ✓ Make sure the wires are properly managed and insulation layer is not torn to prevent electrocution.

- ✓ Wiring must be correctly connected to prevent damage to product(s)
- ✓ Servo motor U, V, W terminal should be connected correctly and NOT connected directly to an AC power supply.
- ✓ Capacitor, inductor or filter shouldn't be installed between servo motor and servo drive.
- Connecting wires or any non-heat resistant components should be put near to heat sink of the servo drive or motor.
- ✓ The flyback diode which is connected in parallel to output signal DC relay must not be connected in reverse.

Tuning and running

- ✓ Make sure the wirings of servo drive and servo motor are installed and fixed properly before powering on.
- ✓ On the first time tuning of the product, it is recommended to run unloaded until all the parameter settings are confirmed to prevent any damage to the product or machine.

Usage

- ✓ Please install an emergency stop button on machine to stop operation immediately if there is an accident.
- ✓ Please make sure machine is stopped before clearing an alarm.
- ✓ Servo drive must be matched with specified motor.
- ✓ Frequent restart of the servo system might incur damage to the product.
- ✓ Servo drive and motor will be hot to touch shortly after power off. Please be careful.
- ✓ Modification(s) to servo system is prohibited.

Error Handling

- ✓ Please wait for 5 minutes after powering off for the electricity to be fully discharged before uninstalling the cables.
- ✓ Participate maintenance personals should have sufficient training in maintenance and operation of this product series.

- ✓ Please handle the error before clearing an alarm.
- ✓ Keep away from machine after a restart upon alarm. Mechanical axis might suddenly move. Such hazard should be prevented during the utilization of the product.

Model Selection

- Rated torque of the servo motor should be higher than continuous designated torque when fully loaded.
- ✓ Load inertia ratio of the motor should be lower or equals to recommended value for specified models
- ✓ Servo drive must be matched with specified motor.

Warranty Information

Available for

Leadshine overseas warranty only covers Leadshine AC servo products that are obtained through Leadshine certified sales channel outside of China.

Warranty claim

- All Leadshine AC servo products (Servo drives and motors) overseas enjoy 18-month warranty period.
- Due to unforeseen circumstances in different sales regions around the globe, we recommend users to seek technical support from directed sales channel as any warranty claim or repair services may be required.
- Please be informed that any maintenance/repair work that is outside of the warranty claim conditions might incur some charges and to be confirmed before product(s) is being sent in.
- The duration required for maintenance work to be done is to be confirmed after initial check-up but we reserve the right to prolong the repair duration if needed.
- Discontinued products within warranty period will be replaced with a product of similar specifications.

Steps to warranty claim

- 1. Visit Leadshine global site www.leadshine.com to look for local certified sales channel.
- 2. Contact designated sales channel to check if any fee might incur. May include repair fee, spare part cost or shipping cost.

Circumstances where warranty claim is not available

- Damage/Loss due to occurrence of natural or man-made disaster such as fire, flood or earthquake.
- Installation or wiring error
- If there is any modification done to the product
- Warranty label on products is torn or not existing
- Not a product bought from Leadshine certified global network of retailers/distributors.

Before warranty claim

- Please backup device parameters before any repair work/warranty claim. Leadshine and Leadshine certified retailers/distributors will not be held responsibilities for any data loss.
- If available, please send product back in original packaging or make sure it is well packaged to prevent any damage to the product during shipping.

Leadshine Technology Co.,Ltd. and its certified sales channel reserved the final right of the interpretation of the warranty information.

Table of Contents

CHAPTER 1 INTRODUCTION	9
1.1 Product Introduction	9
1.2 MODEL NUMBER STRUCTURE	10
1.3 Driver Technical Specification	11
1.4 Driver Ports and Connectors	13
1.5 MOTOR PORTS AND CONNECTORS	15
CHAPTER 2 INSTALLATION & WIRING	16
2.1 Servo Drive Installation.	16
2.1.1 Servo drive installation environment	16
2.1.2 Servo Drive Dimension	16
2.2 Servo Motor Installation	19
2.2.1 Installation conditions	19
2.2.2 Precautions during installation	19
2.3 EL7-EC WIRING DIAGRAM	21
2.4 Servo Drive Ports	25
2.4.1 X1 Main power supply	26
2.4.2 Regenerative resistor selection and connections	28
2.4.2 Wire Gauge for Main Power Supply	33
2.4.3 Wiring connections for EL7-EC series servo drives	34
2.4.4 Connecting motor power cable to servo drive	
2.5 HOLDING BRAKE CONNECTION	39
2.6 CN2 ENCODER	
2.8 CN3/CN4 ETHERCAT COMMUNICATION PORT	
2.9 CN6 SAFE TORQUE OFF (STO) PORT	
2.10 CN1 I/O SIGNAL PORT	
2.10.1 Selection of I/O signal cable	
2.10.2 Common input circuit	
2.10.3 Common output circuit	
2.10.4 Probe input circuit	
2.10.5 DI signal function configuration	
2.10.6 DO signal function configuration	
2.11 CN5 Frequency divider pulse output port	
2.12 MEASURES AGAINST ELECTROMAGNETIC INTERFERENCE	
2.12.1 Grounding connection and other anti-interference wiring connections	
2.12.2 Using line filter	58
CHAPTER 3 PARAMETER	60
3.1 PARAMETER LIST	
3.1.1 Servo drive parameter	
3.1.2 Manufacturer parameter	
3.1.3 Motion parameter starting with object dictionary 6000	
3.2 PARAMETER FUNCTION	
3.2.1 【Class 0】 Basic Settings	
3.2.2 【Class 1】 Gain Adjustments	
3.2.3 【Class 2】 Vibration Suppression	83
3.2.4 【Class 3】 Velocity Control	90
3.2.5 【Class 4】 I/O Interface Setting	92

3.2.6 【Class 5 】 Extension settings	97
3.2.7 【Class 6】 Other settings	102
3.3 402 PARAMETERS FUNCTION	108
CHAPTER 4 SERVO DRIVE OPERATION	126
4.1 GET STARTED WITH DRIVER OPERATION	_
4.1.1 Checklist before operation	
4.1.2 Power On	
4.1.3 Trial Run	
4.1.4 Motor rotational direction settings	
4.1.5 Holding Brake Settings	
4.1.6 Servo Running	
4.1.7 Servo stop	
4.2 ELECTRONIC GEAR RATIO	
4.3 FRONT PANEL	
4.4 PANEL DISPLAY AND OPERATION	
4.4.1 Panel Operation	
4.4.2 Data Monitoring Mode	
4.4 PARAMETER SAVING USING FRONT PANEL	
4.5 Auxiliary functions	156
CHAPTER 5 CONTROL MODE	161
5.1 EL7-EC MOTION CONTROL STEP-BY-STEP	161
5.2 CIA 402 STATE MACHINE	162
5.3 Driver Control Mode Setting	164
5.3.1 Supported control mode (6502h)	164
5.3.2 Operational mode setting (6060h) and Operational mode display (6061h)	164
5.4 COMMON FUNCTIONS FOR ALL MODES	164
5.4.1 Digital input setting and status display	164
5.4.2 Digital output setting and control operation method	165
5.4.3 Motor Rotational Direction	165
5.4.4 Stop Settings	
5.4.5 Position mode – Electronic Gear	
5.4.6 Position Limits	
5.4.7 Control Word	168
5.4.7 Status Word	
5.4.8 Synchronous cycle time setting	170
5.4.9 Driver Enabling	
5.5 POSITION MODE (CSP、PP、HM)	
5.5.1 Common Functions of Position Mode	
5.5.2 Cyclic Synchronous Position Mode (CSP)	
5.5.3 Protocol Position Mode (PP)	
5.5.4 Homing mode (HM)	
5.6 VELOCITY CONTROL MODE (CSV, PV)	
5.6.1 Common Functions of Velocity Control	
5.6.2 Cyclic Synchronous Velocity Mode (CSV)	
5.6.3 Profile Velocity Mode (PV)	
5.7 TORQUE MODE (CST、PT)	
5.7.1 Common Functions of Torque Mode	206
5.7.2 Cyclic Synchronous Torque Mode (CST)	207
5.7.3 Profile Torque Mode (PT)	200

CHAPTER 6 APPLICATION	211
6.1 GAIN ADJUSTMENT	211
6.2 INERTIA MEASURING FUNCTION	213
6.2.1 Online inertia determination	213
6.2.2 Offline inertia determination	213
6.2.3 Auxiliary function to determine inertia on front panel	214
6.2.4 Inertia measuring using Motion Studio	215
6.3 Auto gain adjustment	217
6.4 Manual gain adjustment	220
6.5 GAIN SWITCHING	222
6.6 FEEDFORWARD GAIN	
6.6.1 Velocity feedforward	
6.6.2 Velocity feedforward application	
6.6.3 Torque feedforward	227
6.6.4 Torque feedforward application	
6.7 MODEL FOLLOWING CONTROL	
6.8 FRICTION COMPENSATION FUNCTION	
6.9 PARAMETERS ADJUSTMENT UNDER DIFFERENT CONTROL MODES	
6.9.1 Position control mode	
6.9.2 Velocity control mode	
6.9.3 Torque control mode	
6.10 Safety Functions	
6.10.1 Emergency stop function	
6.11 VIBRATION SUPPRESSION	
6.11.1 Mechanical resonance suppression	
6.11.2 End vibration suppression	
6.11.3 Mechanical properties analysis	
6.12 MULTITURN ABSOLUTE ENCODER	
6.12.1 Parameters setting	
6.12.2 Read absolute position	
6.12.3 Absolute Encoder Related Alarm	
6.13 PROBE	
6.13.1 Probe function	
6.13.2 Signal Input of EXT1 and EXT2	
6.13.3 Probe Control Word 60B8h	
6.13.4 Probe Status Word 60B9h	
6.13.6 Latch Position Register	
6.13.7 Latch Counter Register	
6.13.8 Probe mode	
6.14 OTHER FUNCTIONS	
6.14.2 Functions under Position mode	
6.14.3 Functions under verocity mode	
0.14.3 Functions under torque mode	230
CHAPTER 7 ETHERCAT COMMUNICATION	259
7.1 ETHERCAT PRINCIPLE FUNCTION	259
7.2 SYNCHRONOUS MODE	260
7.2.1 Free Running Mode	260
7.2.2 Distributed clock synchronization mode	260
7.3 ETHERCAT STATE MACHINE	261
7.4 CANOPEN OVER ETHERCAT (COE)	262
7.4.1 Network structure of EL7-EC	262
7.4.2 Object dictionary	263
7.4.3 Service Data Object (SDO)	263
7.4.4 Process Data Object (PDO)	263

CHAPTER 8 WARNING AND ALARM	266
8.1 Servo drive warning	266
8.2 Servo drive alarm	
8.3 Alarm Handling	274
8.4 ALARM CLEARING	288
8.4.1 Servo Drive Alarm	288
8.5 ETHERCAT COMMUNICATION ALARM	289
ABOUT US	300
ABOUT US	300

Chapter 1 Introduction

1.1 Product Introduction

EL7-EC Series AC servo products are high performance AC digital servo which is designed for position/velocity/torque high accurate control with power rating ranging up to 7.5kW which provides a perfect solution for different applications with easy tuning process. Based on the ETG COE + EtherCAT DSP402 protocol, it can be seamlessly connected to controllers/drives that support this standard protocol.

EL7-EC series AC servo drives are using the latest Digital Signal Processing (DSP) chip and Intelligent Power Module (IPM) with compact components integration and great reliability. Using the best PID calculation for Pulse Width Modulation (PWM) control, our EL7-EC series products are the one to beat in this product category.

In comparison to conventional pulse controlled servo drives, our EL7-EC provides advantages as listed below.

Lengthen communication range and lower electromagnetic interference Due to the reliance of pulse command, pulse controlled servo drives could be easily disrupted by electromagnetic interferences. EtherCAT communication protocol provides fault detections limitations and error handling that makes communication more reliable over long distances.

> Greater motion control

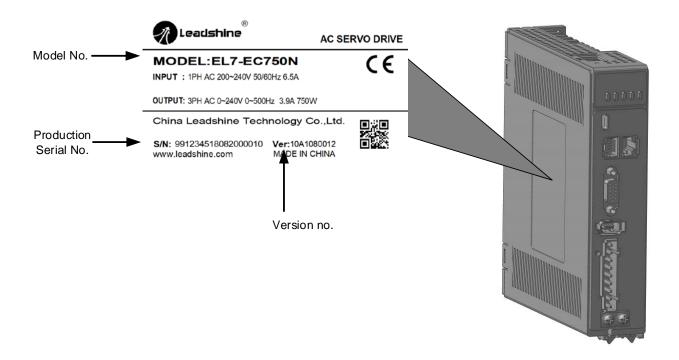
Trajectory generation can be done within the driver under non-cyclic synchronous mode. Controller only needs to deliver target position, velocity and acceleration commands to the driver. Drivers can then achieve greater control by applying feedforward to the commands.

Simplify complex wiring work

Using EtherCAT communication protocols, the connections between master device and slave stations can be realized using only LAN cables.

Reduce cost by lowering the requirement for more ports

Multiple axes control can be realized without requirement for more ports or pulse module on the master device/controller. Only a network port is needed to chain the axis controller (drivers) together in series.


1.2 Model Number Structure

Servo Drive

EL7-EC 750 N T

1	2	3	4	(5

No.	Description					
1	Series No.	Series No. EL7: Servo drive series				
2	Command source	RS: Pulse + direction/Modbus RTU/Analogue				
		EC: EtherCAT				
	Power rating	400: 400W 750: 750W 1000:1000W				
3		1500: 1500W 2000: 2000W 3000:3000W				
		4400:4400W 5500:5500W 7500:7500W				
4	Type N: Drive version with STO, Certifications including CE/STO/UL					
5	Main power input:	Blank: 220VAC(1 or 3-phase) T: 380VAC(3-phase)				

1.3 Driver Technical Specification

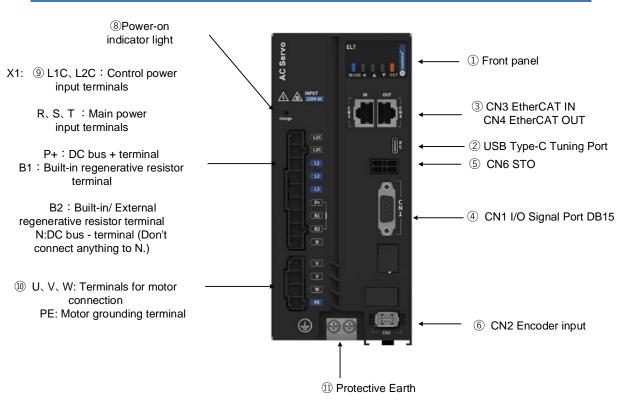
EL7-EC 220V Models

EL7-ECN series	EL7-EC400N	EL7-EC750N	EL7-EC1000N	EL7-EC1500N	EL7-EC2000N
Rated power (W)	400	750	100	1500	2000
Rated Current (Arms)	3.5	5.5	7	9.5	12
Peak Current (Arms)	9.2	16.6	18.7	31.1	36
Size (mm)	40*175*156	50*1	75*156	80*175	*179
Main Power Supply		Cinalo aboso AC 3	220\/ 159/ .109/ 5	50//011=	
Control Circuit Power Supply		Single phase AC 2	220V, -15%~+10%, 5	00/0002	

EL7-EC 400V Models

	EE/ EO 4007 Modelo								
EL7-ECN	T series	EL7-EC750	EL7-EC1000	EL7-EC1500	EL7-EC2000	EL7-EC3000	EL7-EC4400	EL7-EC5500	EL7-EC7500
Rated Pov	wer(W)	750	1000	1500	2000	3000	4400	5500	7500
Rated (Arms)	Current	2.7	3.5	5.4	8.4	11.9	16.5	20.8	25.7
Peak (Arms)	Current	8.6	10.6	14.9	24.8	33.2	38.9	51.6	33.6
· ·		55*175*179	*175*179 80*175*179 89*250*230						
Main Power Supply			Three pl	Three phase AC 380V~440V, -15%~+10%, 50/60Hz					
Control Circuit Power Supply Single phase AC 380V~440V, -15%~+10%, 50/60Hz									

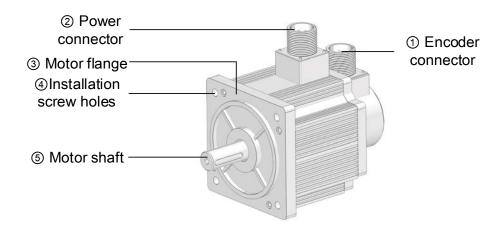
Drive mode	Drive mode IGBT PWM sinusoidal wave drive				
Dilve mode		Profile Position Mode (PP)			
		Position	Cyclic Synchronous Position Mode (CSP)		
			Homing Mode (HM)		
Control mode			Profile Velocity Mode (PV)		
Controt mode		Velocity	Cyclic Synchronous Velocity Mo	de (CSV)	
			Profile Torque Mode (PT)		
		Torque	Cyclic Synchronous Torque Mod	In (CST)	
			RS485 protocol:	ie (631)	
Encoder Feedba	ck		23-bit multiturn absolute magne	etic/optical encoder	
			4 Digital Inputs (Supports NPN		
	Digital Input		Configurable input signals under EtherCAT mode:	1. Clear Alarm (A-CLR) 2. Positive limit switch (POT) 3. Negative limit switch (NOT) 4. Homing switch (HOME-SWITCH) 5. Emergency stop (E-Stop)	
			3 Digital Outputs (2 single-ended, 1 differential)		
1/0	Digital Outp	ut	Configurable output signals under EtherCAT mode:	1. Alarm (ALM) 2. Servo ready (SRDY) 3. External brake off (BRK-OFF) 4. Positioning completed (INP) 5. Velocity at arrival (AT-SPEED) 6. Torque limiting command (TLC) 7. Zero speed position (ZSP) 8. Velocity coincidence (V-COIN) 9. Position command (P-CMD) 10. Velocity limit (V-LIMIT) 11. Velocity command (V-CMD) 12. Servo enabled (SRV-ST) 13. Homing done (HOME-OK)	
	Encoder Ou	tput	Encoder ABZ differential pulse	output	



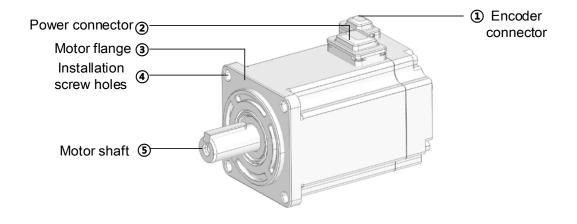
	Probe Input	2 high speed probe inputs: EXT1+/EXT1-, EXT2+/EXT2-		
Communication USB Type-C		Modbus USB2.0 (No need to connect driver to power supply)		
Port	EtherCAT	EtherCAT, Communication up to 128 axes to a host		
Software		Driver tuning through Motion Studio Ver. 2.2.x. Parameters tuning in current loop, position loop, velocity loop; Modify I/O signal and motor parameters; Variables(velocity, position deviation, etc.) monitoring using step diagrams		
Driver Front Pan	el	5 push buttons and 8-segments display		
Holding brake		Built-in (Supports external brake)		
Safety Protection		Overcurrent. Overvoltage. Undervoltage. Overheat. Overload. Overtravel. Single-Phasing. Regenerative resistor error. Position deviation error. Encoder feedback error. Excessive braking rate. EEPROM error		
Safe Torque Off (STO) function	Available for all EL7-EC series products		
	Temperature	Storage: -20-80°C (Condensation free); Installation: 0-55°C (Not frozen)		
Environment	Humidity	Under 90%RH (Condensation free)		
Ellali Ollyllelif	Altitude	Up to 1000m above sea level		
	Vibration	Less than 0.5G (4.9m/s2) 10-60Hz (non-continuous working)		
	IP ratings	IP20		

1.4 Driver ports and connectors

EL7-ECN Series Servo Drive 220V Models ⑤ CN6 STO (1) Front Panel ② USB Type-C Tuning Port ③ CN3 EtherCAT IN CN4 EtherCAT OUT 9 L1, L2: Main power 4 CN1 I/O Signals supply P+: (External brake resistor P terminal/Internal DC 6 CN2 Encoder bus positive terminal) Br : Regenerative resistor ?Power on terminal indicator light N: Internal DC bus negative terminal (Do not connect) U, V, W: Motor power terminal ① Protective Earth EL7-ECNT Series Servo Drive 400V Models



Parts & Connectors Description No. Including a LED display and 5 buttons. LED display is used to display servo drive status and parameter settings. 5 buttons: : To switch between different modes and parameters (1)Front Panel 4 : Switch between value : Switch between sub-menus/Increase : Switch between sub-menus/Decrease S : Enter Connect to computer for tuning of servo drive. Parameters of the (2) USB Type-C tuning port servo drive can be modified without connecting to main power supply. (3) CN1 I/O signal Probe input signal & other I/O signals terminals CN3 EtherCAT IN/ **(4)** Connect to master device or next/previous slave station CN4 EtherCAT OUT **(5)** CN6 STO Safe Torque Off (STO) port (6) CN2 Encoder Connect to motor encoder Lights up when servo drive is connected to main power supply. Power-on indicator light Please do not touch the power terminal immediately after power off as the capacitor might require some time to discharge. EL7-EC 220V models L1, L2 Main power supply 220VAC P+, Br Connect to regenerative resistor P+, N Common DC bus terminals for multiple drivers (9)Motor connector: Connect to U,V,W power terminals on servo U, V, W PΕ PE motor earth terminal: Connect to motor PE terminal EL7-EC 400V models L1C, L2C Control circuit power supply input - 1ph 380VAC R, S, T Main power supply input - 3ph 380VAC P+ DC bus positive terminal. Connect to regenerative resistor Please short connect B1 and B2 when using internal (9) regenerative resistor. If external regenerative resistor is B1, B2 required, remove the short connector between B1 and B2, (10) connect the external regenerative resistor to P+ and B2. DC bus negative terminal. Do not connect. Ν N1 and N2 are short connected. Connect N1 and N2 after N1. N2 removing short connector to a DC reactor to suppress electrical (4.4/5.5/7.5kW models)current high harmonics. (11)Protective Earth PE Connect to PE of main power supply. For grounding



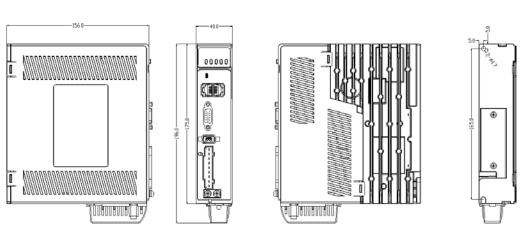
1.5 Motor ports and connectors

Motors with aviation connectors

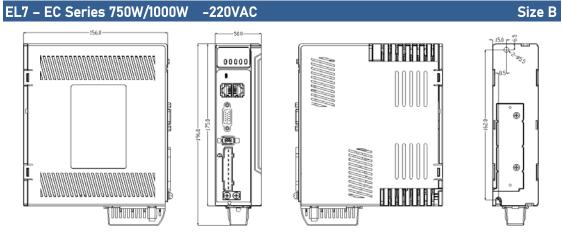
Motors with direct connectors

Chapter 2 Installation & Wiring

2.1 Servo Drive Installation


2.1.1 Servo drive installation environment

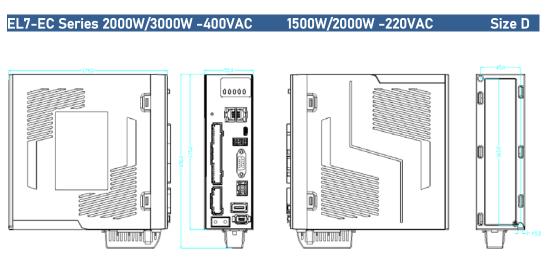
Temperature	Storage: -20-80°C (Condensation free); Installation: 0-55°C (Not frozen)
Humidity	Under 90%RH (Condensation free)
Altitude	Up to 1000m above sea level
Vibration	Less than 0.5G (4.9m/s2) 10-60Hz (non-continuous working)
Atmospheric	No corrosive gas, combustibles, dirt or dust.
IP ratings	IP20


2.1.2 Servo Drive Dimension

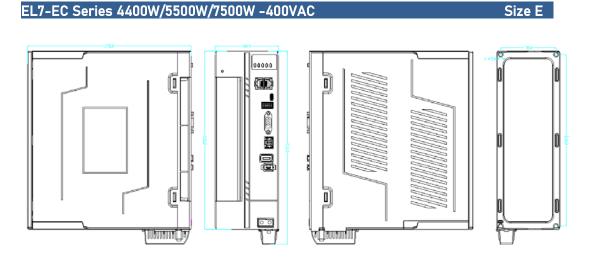
EL7 - EC Series 400W - 220VAC

Size A

40mm x 175mm x 156mm



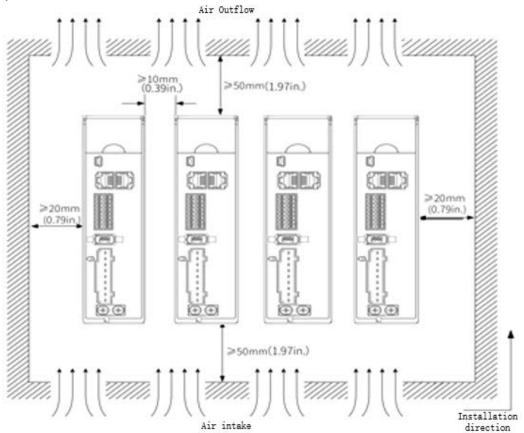
50mm x 175mm x 156mm



EL7-EC Series 750W/1000W/1500W -400VAC Size C

55mm×175mm×179mm

80mm×175mm×179mm



89mm×250mm×230mm

Space requirement for installation

In order to ensure efficient heat dissipation, please leave at least 10mm installation space in between drivers. If drivers need to be mounted compactly, please leave at 1mm of installation space. Please keep in mind that under such conditions, the drivers can only run at 75% of actual load rate.

✓ Installation method

Please install the driver vertical to ground facing forward for better heat dissipation. Always install in rows and use heat insulation board to separate between rows. Cooling fans are recommended for drivers to achieve optimal performance.

✓ Grounding

PE terminals must be grounded to prevent electrocution hazard or electromagnetic interference.

✓ Wiring

Please ensure there is no liquid around the wiring and connectors as liquid leakage may cause serious damage to the driver(s).

2.2 Servo Motor Installation

2.2.1 Installation conditions

Installation conditions may affect the lifespan of a motor

- Please keep away from corrosive fluid and combustibles.
- > If dusty working environment is unavoidable, please use motors with oil seal.
- Please keep away from heat source.
- > If motor is used in enclosed environment without heat dissipation, motor lifespan will be short.
- Please check and clean the installation spot before installation.

2.2.2 Precautions during installation

Installation method

Install horizontal to ground

Make sure power cable and encoder cable is facing downwards to make sure fluid doesn't leak into the ports.

Install vertical to ground

Please use a motor with oil seal when paired with a reducer to prevent reducer oil from leaking into the motor.

Oil- and waterproofing

- Do not submerge motor/cable under oil/water
- Please use a motor with oil seal when paired with a reducer to prevent reducer oil from leaking into the motor.
- If there is an unavoidable fluid leakage near the motor, please use motor with better IP ratings.
- Make sure power cable and encoder cable is facing downwards to make sure fluid doesn't leak into the ports.
- Avoid the usage of motor in water/oil leaking prone environment.

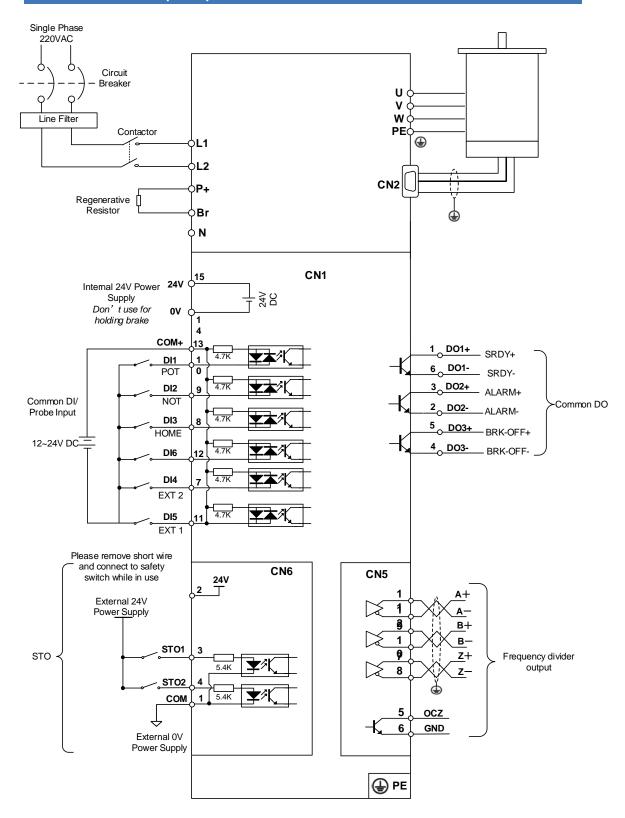
Cable under stress

- Do not the bend the cable especially at each ends of the connectors.
- Make sure to not let the cables be too tight and under tremendous stress especially thinner cables such as signal cables.

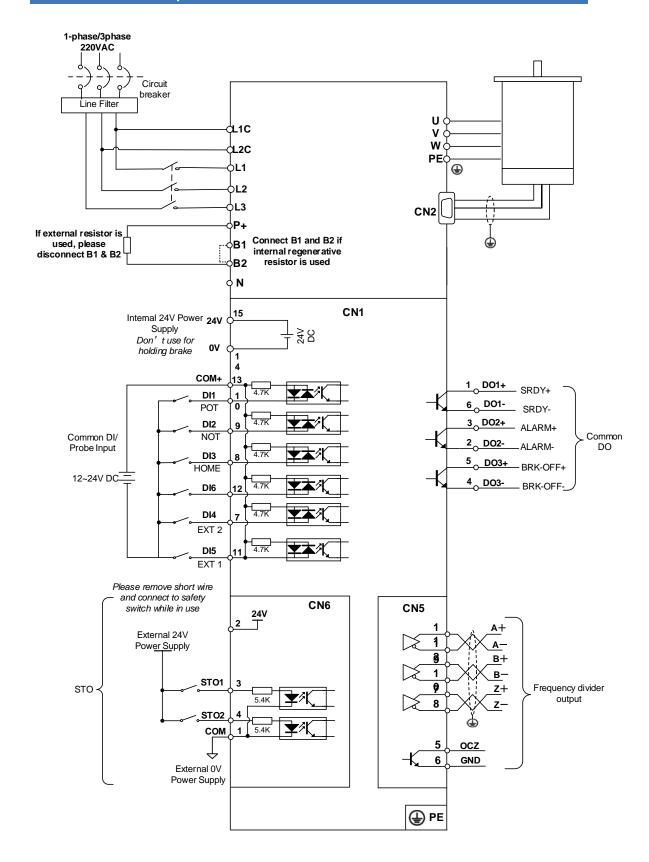
Connectors

- Please to remove any conductive foreign objects from the connectors before installation
- The connectors are made of resin. May not withstand impact.
- Please hold the driver during transportation, not the cables.

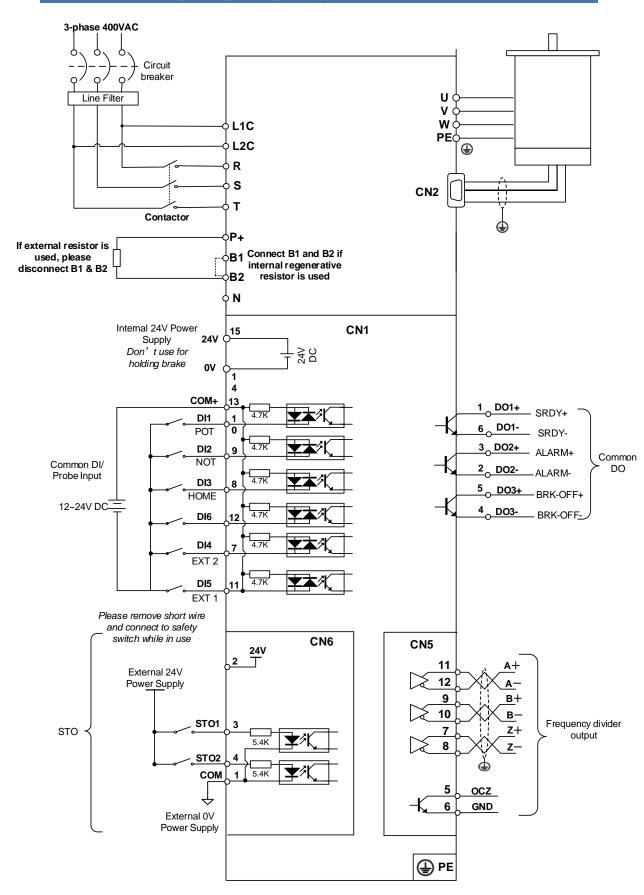
> Leave enough "bend" on the connector cables to ensure less stress upon installation.


Encoder & coupling

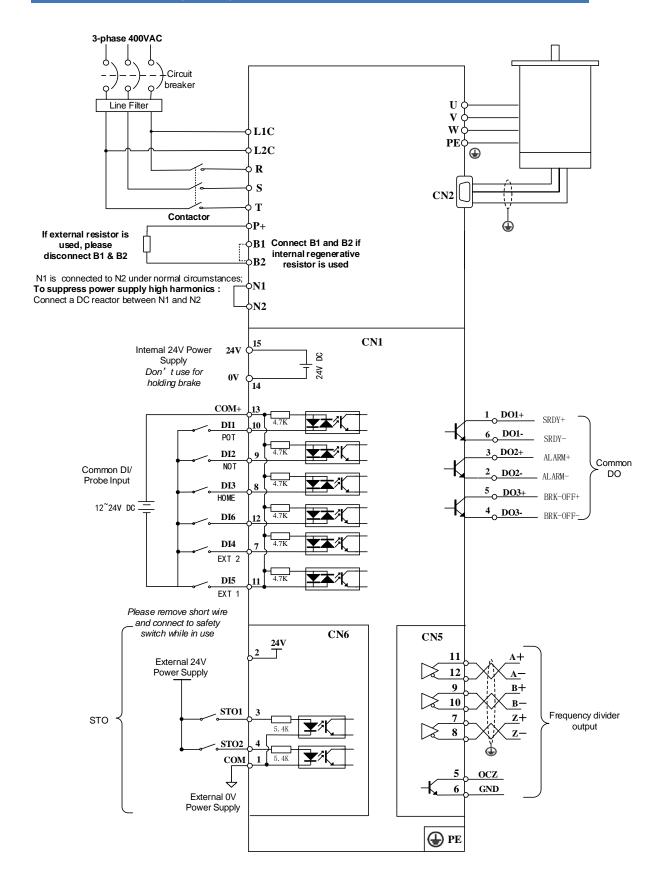
- > During installation or removal of coupling, please do not hit the motor shaft with a hammer as it would cause damage to internal encoder.
- Please make sure to centralize the motor shaft and coupling, it might cause damage to motor or encoder due to vibration.
- Please make sure axial and radial load is within the limits specified as it might affect the lifespan of the motor or cause damage to it.


2.3 EL7-EC Wiring Diagram

EL7-EC Series 400W/750W/1000W - 220V Models



EL7-EC Series 1500W/2000W - 220V Models



EL7-EC Series 750W/1000W/1500W/2000W/3000W - 400V Models

EL7-EC Series 4400W/5500W/7500W - 400V Models

2.4 Servo Drive Ports

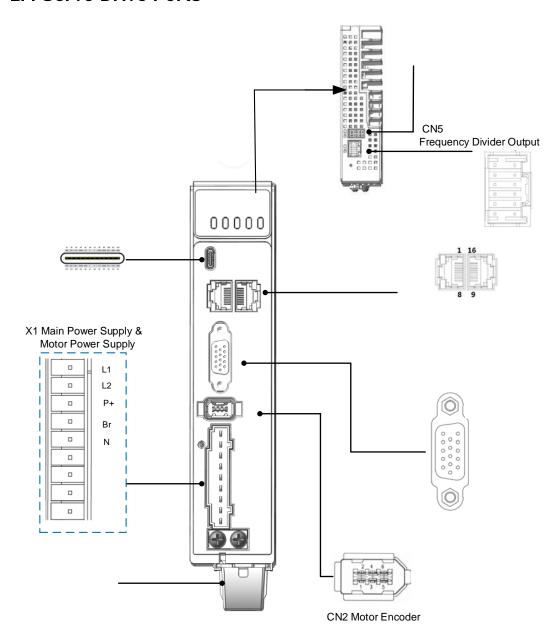


Table 2-1 Functions of driver port

Port	Function
CN1	I/O Signal Port
CN2	Encoder port
USB	USB Type-C Tuning Port
CN3	EtherCAT IN Communication Port
CN4	EtherCAT OUT Communication Port
CN6	Safe Torque Off (STO) Port
X1	Main Power Supply

2.4.1 X1 Main power supply

EL7-EC Series - 220V Models

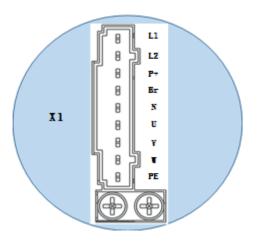
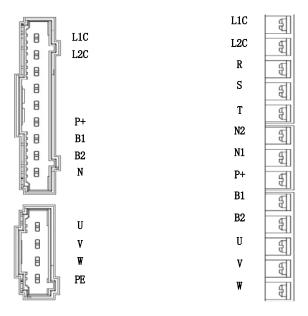



Table 2-2 X1 port descriptions

Port	Pin	Functions	Remarks		
X1	L1	Single phase 220VAC,	Optional isolation transformer Do not connect to 380VAC directly to prevent damage to driver. In case of serious interference, it is recommended to connect a line filter to main power supply; It is recommended to install a fuseless circuit breaker to cut off power supply in time when the driver fails.		
	L2	+10 ~ -15%, 50/60Hz			
	P+	 Internal DC bus positive terminal External regenerative resistor P terminal 	Please refer to 2.4.1 Regenerative resistor selection and connections		
	Br	External regenerative resistor terminal			
	N		Please do not connect		
	U	Motor U terminal			
	٧	Motor V terminal	Please ensure proper wire connection on motor.		
	W	Motor W terminal			
	PE	Motor Protective Earth	Please ground PE of driver and motor together		

EL7-EC Series - 400V Models

Port	Pin	Functions	Remarks		
	L1C	Control circuit: Single phase 400VAC, +10 ~ -15%, 50/60Hz	① Optional isolation transformer		
	L2C		2 In case of serious interference, it is recommended to connect a line filter to		
	R	Main Power Supply: Three phase 400VAC,	main power supply;		
	S		It is recommended to install a fuseless circuit breaker to cut off power supply in time when the		
	Т	+10 ~ -15%, 50/60Hz	driver fails.		
X1	P+	 3 Internal DC bus positive terminal 4 External regenerative resistor P terminal 	If an external regenerative resistor is required, please disconnect B1 and B2. Connect the external regenerative resistor to terminal P+ and B2.		
	B1/B2	External regenerative resistor terminal			
	N		Please do not connect		
	N1	Internal DC bus negative terminal	N1 and N2 are connected under normal circumstances. To suppress power supply high		
	N2		harmonics, please disconnected N1 and N Connect a DC reactor between N1 and N2.		
	U	Motor U terminal			
	V	Motor V terminal	Please ensure proper wire connection on motor.		
	W	Motor W terminal			
	PE	Motor Protective Earth	Please ground PE of driver and motor together		

27

2.4.2 Regenerative resistor selection and connections

The use of regenerative resistor

When the motor opposes the direction of rotation as in deceleration or vertical axis escalation, part of the regenerative energy will be delivered back to the driver. This energy will first be stored in internal capacitors of the driver. When the energy stored in the capacitors reach the maximum capacity, a regenerative resistor is required the excessive energy to prevent over-voltage.

Selection of regenerative resistor

Table 2-3 Recommended selection of regenerative resistor

Table 2 o Necommended Selection of regenerative resistor				
Model no.	Internal	Internal resistor	Minimum	Minimum power
	resistance (Ω)	power rating (W)	resistance (Ω)	rating (W)
EL7-EC400N	100	50	50	50
EL7-EC750N	50	75	40	50
EL7 -EC1000N	50	100	30	100
EL7-EC750NT	100	100	100	100
EL7-EC1000NT	100	100	100	100
EL7-EC1500NT	100	100	100	100
EL7-EC2000NT	50	100	40	100
EL7-EC3000NT	50	100	40	100
EL7-EC4400NT	35	100	35	100
EL7-EC5500NT	35	100	25	100
EL7-EC7500NT	35	100	25	100

Calculation of regenerative resistance under normal operation

Steps:

- 1. Determine if driver comes with a regenerative resistor. If not, please prepare a regenerative resistor with resistance value higher than might be required.
- 2. Monitor the load rate of the regenerative resistor using front panel (d14). Set the driver on high velocity back and forth motions with high acceleration/deceleration.
- 3.Please make sure to obtain the value under following conditions: Driver temperature < 60° C, d14<80(Won't trigger alarm), Regenerative resistor is not fuming, No overvoltage alarm(Err120).

Pb(Regenerative power rating) = Resistor power rating x Regenerative load rate (%)

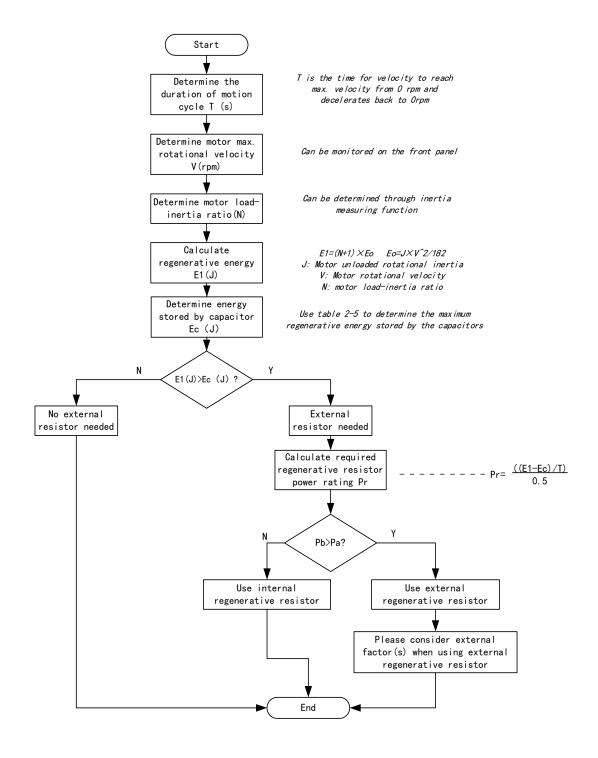
Please choose a regenerative resistor with power rating Pr about **2-4 times the value of Pb** in considered of harsh working conditions and some 'headroom'.

If the calculated Pr value is less than internal resistor power rating, external resistor is not required.

R(Max. required regenerative resistance) = (380° - 370°)/Pr

Problem diagnostics related to regenerative resistor:

- If driver temperature is high, reduce regenerative energy power rating or use an external regenerative resistor.
- If regenerative resistor is fuming, reduce regenerative energy power rating or use an external regenerative resistor with higher power rating.
- If d14 is overly large or increasing too fast, reduce regenerative energy power rating or use an external regenerative resistor with higher power rating.
- If driver overvoltage alarm (Er120) occurs, please use an external regenerative resistor with lower resistance or connect another resistor in parallel.


Please take following precautions before installing an external regenerative resistor.

- 1. Please set the correct resistance value in Pr0.16 and resistor power rating Pr0.17 for the external regenerative resistor.
- 2. Please ensure the resistance value is higher or equals to the recommended values in table 2-3. Regenerative resistors are generally connected in series but they can also be connected in parallel to lower the total resistance.
- 3. Please provided enough cooling for the regenerative resistor as it can reach above 100 $^{\circ}$ C under continuous working conditions.
- 4. The min. resistance of the regenerative resistor is dependent on the IGBT of the holding brake. Please refer to table

Theoretical selection of regenerative resistor

Without external loading torque, the need for an external regenerative resistor can be determined as the flow chart below

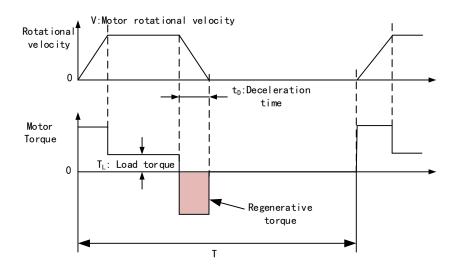


Table 2-4 Steps to calculate capacity of regenerative resistor

rable 2 4 deeps to catediate supports of regenerative reductor				
Steps	Calculation	Symbol	Formula	
1	Servo system regenerative energy	E1	E1=(N+1)×J×V ² /182	
2	Depleted energy from loss of load system during acceleration	EL	$E_L = (\pi/60) \ V \times T_L \times tD$ If loss is not determined, please assume $E_L = 0$.	
3	Depleted energy due to motor coil resistance.	Ем	$E_M = (U^2/R) \times tD$ R= coil resistance, U = operating voltage If R is not determined, please assume $E_M = 0$.	
4	Energy stored by internal DC capacitors	Ec	Please refer to table 2-5	
5	Depleted energy due to regenerative resistance	Eκ	E _K =E1-(EL+EM+EC), If loss is ignored, EK=E1-EC	
6	Required power rating of regenerative resistor	Pr	Pr=E _K /(0.5×T)	

Internal capacitor capacity and rotor inertia

EL7-EC Drivers	Servo motor	Rotor Inertia (× 10 ⁻⁴ kg.m²)	Max. regenerative energy stored in capacitor Ec(J)
400W	ELM2H-0400LA60	0.58	13.47
750W	ELM2H-0750LA80	1.66	22.85
1000W	ELM2M-1000LB80	1.79	27.74
IUUUVV	ELM2M-1000LB130	8.5	21.14

There are motors with low, medium and high inertia. Different motor models have different rotor inertia. Please refer to servo product catalogue for more information on rotor inertia.

Calculation examples:

Servo drive: EL7-EC750N, Servo Motor: ELM2H-0750LA80. When T = 2s, rotational velocity = 3000rpm, load inertia is 5 times of motor inertia.

EL7-EC Drivers	Servo motor	Rotor Inertia (× 10 ⁻⁴ kg.m ²)	Max. regenerative energy stored in capacitor Ec(J)
750W	750W ELM2H-0750LA80		22.85

Regenerative energy produced:

E1 =
$$\frac{(N+1) \times J \times V^2}{182}$$
 = $\frac{(5+1) \times 1.66 \times 3000^2}{182}$ = 49.3J

If E1<Ec, internal capacitors can't take in excessive regenerative energy, regenerative resistor is required.

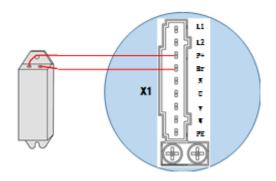
Required regenerative resistor power rating Pr:

$$Pr = \frac{(E1 - Ec)}{0.5T} = \frac{49.3 - 22.85}{0.5 \times 2} = 26.45W$$

Hence, with the internal regenerative resistor Pa = 75W, Pr<Pa, no external regenerative resistor is required.

Let's assume if the load inertia is 15 times of motor inertia, Pr = 108.6W, Pr>Pa, external regenerative resistor is required. And to consider for harsh working environment,

When selecting the resistance of the regenerative resistor, please be higher than the minimum value recommended in table 2-3 but lower than Rmax


Rmax =
$$(380^2-370^2)/Pr=7500/108.6=69\Omega$$

In conclusion, a regenerative resistor with resistance 40Ω - 70Ω and power rating 110W to 180W can be chosen.

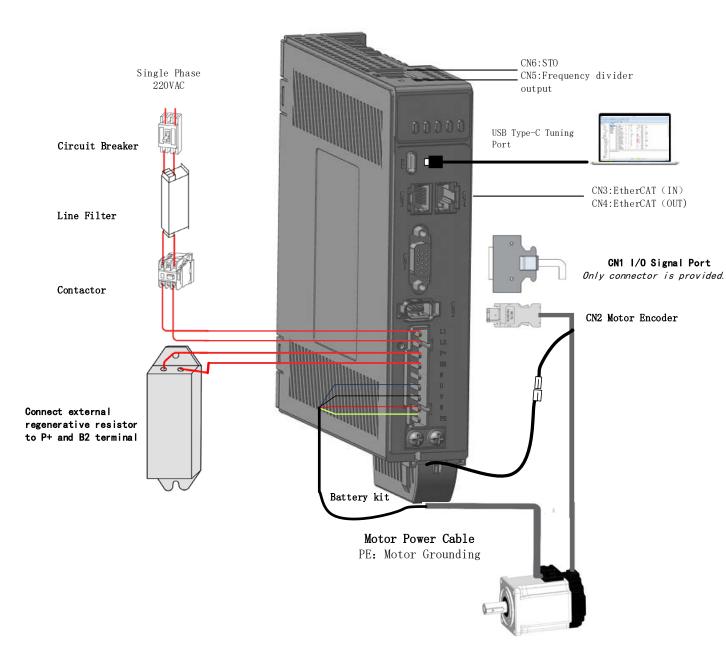
Please take note that theoretical calculations of the regenerative resistance is not as accurate as calculations done under normal operation.

Connection of a regenerative resistor

2.4.2 Wire Gauge for Main Power Supply

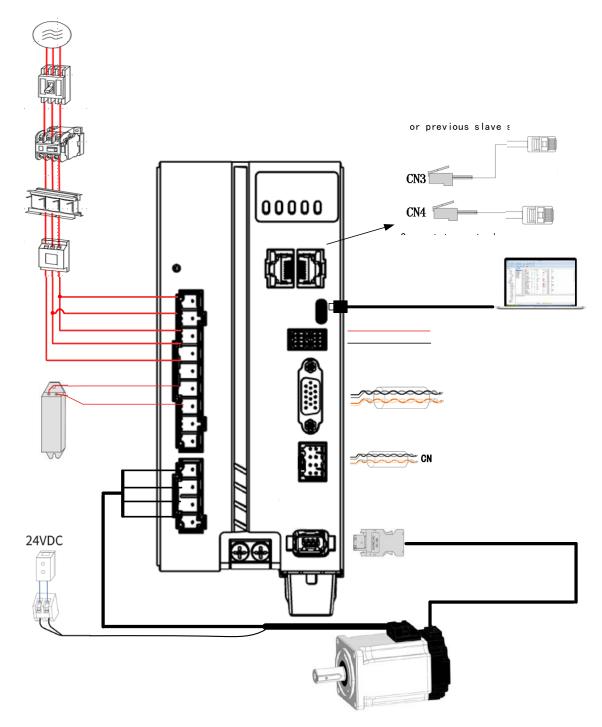
Table 2-6 Main power supply wire gauge

Table 2-0 Main power Supply wire gauge					
Driver	Wire diameter (mm²/AWG)				
Driver	L1 L2/R S T	P+ BR	UVW	PE	
EL7-EC400N	0.81/AWG18	2.1/AWG14	1.3/AWG16	2.1/AWG14	
EL7-EC750N	0.81/AWG18	2.1/AWG14	1.3/AWG16	2.1/AWG14	
EL7-EC1000N	0.81/AWG18	2.1/AWG14	2.1/AWG14	2.1/AWG14	
EL7-EC750NT	1.3/AWG16	2.1/AWG14	1.3/AWG16	2.1/AWG14	
EL7-EC1000NT	2.1/AWG14	2.1/AWG14	2.1/AWG14	2.1/AWG14	
EL7-EC1500NT	2.1/AWG14	2.1/AWG14	2.1/AWG14	2.1/AWG14	
EL7-EC2000NT	2*0.75/AWG18	1.5/AWG16	3*1.5/AWG16	1.5/AWG16	
EL7-EC3000NT	2*0.75/AWG16	1.5/AWG16	3*1.5/AWG16	1.5/AWG16	
EL7-EC4400NT	2*0.75/AWG16	4.0/AWG12	3*4.0/AWG12	4.0/AWG12	
EL7-EC5500NT	2*0.75/AWG14	4.0/AWG12	3*4.0/AWG12	4.0/AWG12	
EL7-EC7500NT	2*0.75/AWG12	4.0/AWG12	3*4.0/AWG12	4.0/AWG12	

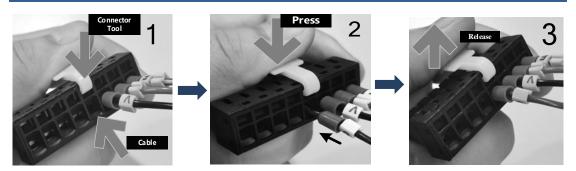

 $[\]succ$ Grounding: Grounding wire should be thicker. Ground PE terminal of servo drive and servo motor together with resistance <100 Ω .

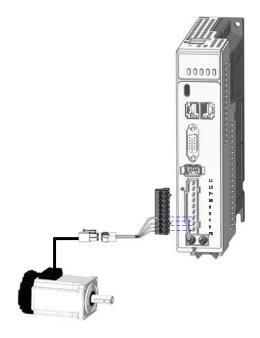
- > A 3-phase isolation transformer is recommended to lessen the risk of electrocution
- Connect a line filter to power supply to reduce electromagnetic interference.
- Please install a fuseless circuit breaker to cut off power supply in time when the driver fails.

2.4.3 Wiring connections for EL7-EC series servo drives


EL7-EC Series - 220VAC

> EL7-EC series servo drive 220VAC models support single phase and three phase 220VAC. Only driver with power rating above 1500W supports three phase 220VAC.

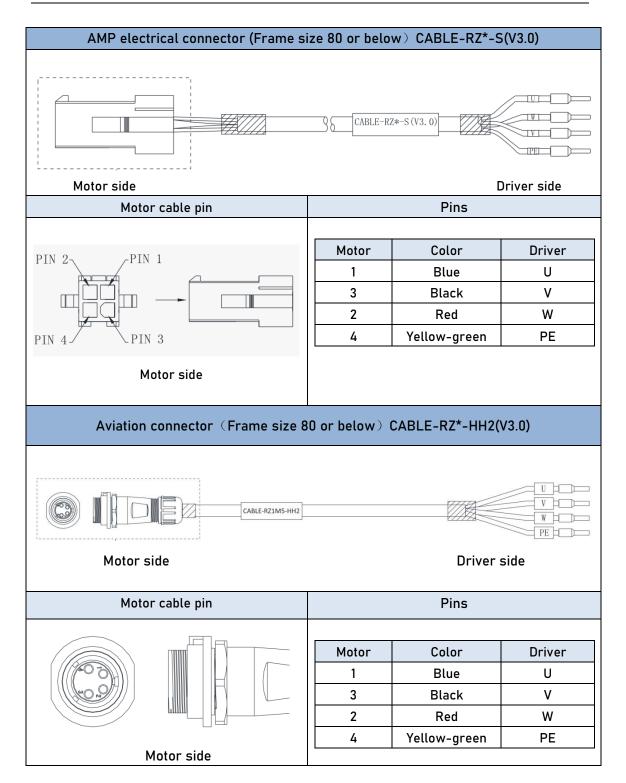

EL7-EC Series - 400VAC


- Please use a circuit breaker for the main power supply to prevent damage to the product or machine.
- Please do not use a contactor in connection to servo motor as it may not withstand a sudden surge of operating voltage.
- Please take note of the capacity when connect to a 24VDC switching power supply, especially if power supply is shared between multiple components. Insufficient supply current will cause failure in holding brake functions.

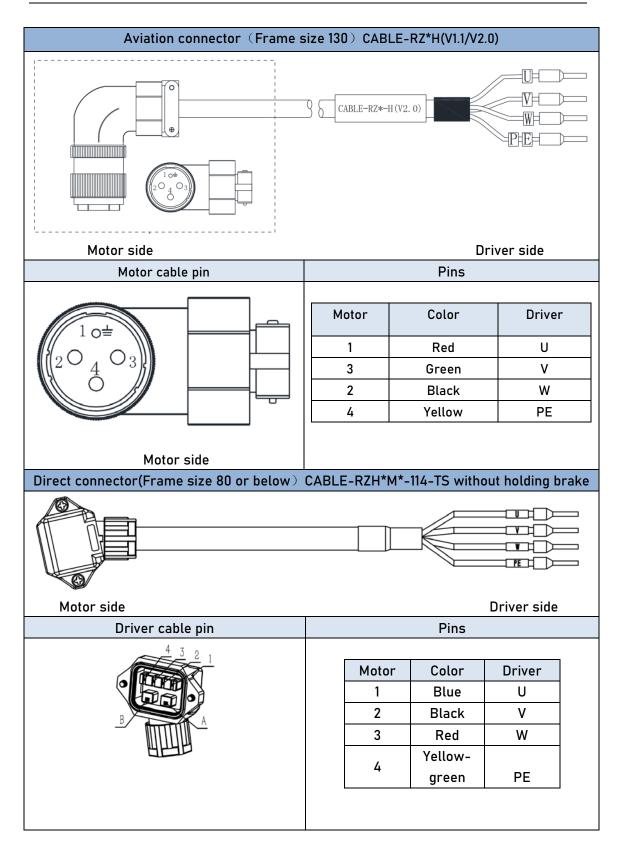
To fix wire cables into connector

2.4.4 Connecting motor power cable to servo drive

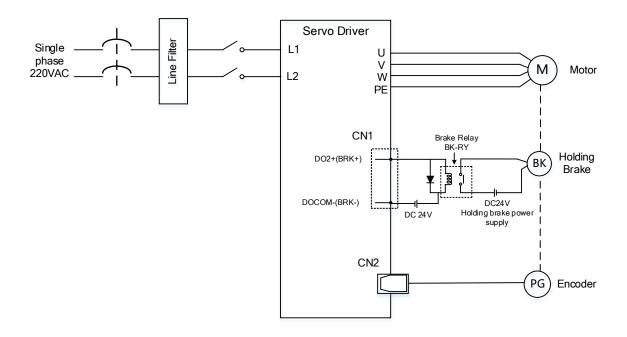
Example: Connecting a motor with electrical connectors

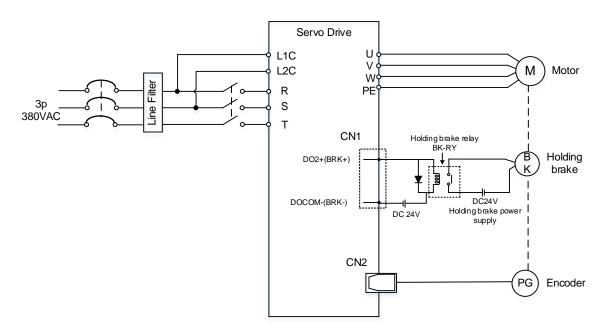

The power cable from the driver is labeled with U, V, W, PE. Please connect the wires accordingly to the power cable extending from the servo motor.

Motor power cable selection


Motor winding power cable

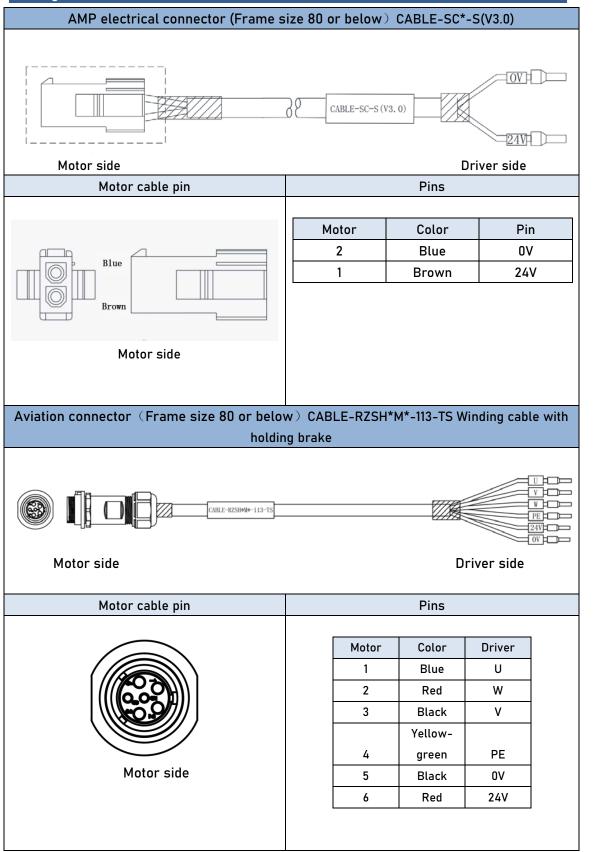
- Wire length available: 1.5m, 3m and 5m
- Connectors type available: AMP electrical connectors, aviation connectors, direct connectors (recommended)
- Please contact Leadshine sales team or any Leadshine certified local retailers for any customized needs.

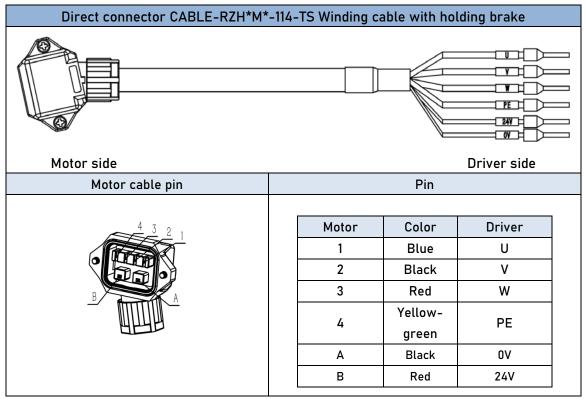




2.5 Holding brake connection

Holding brake is activated when servo drive is not powered on to prevent axis from moving due to gravitational pull or other external forces by locking the motor in place. Usually used on axis mounted vertically to the ground so that the load would not drop under gravitational force when the driver is powered off or when alarm occurs.




Holding brake wiring diagram

Holding Brake cable and connectors

- Mechanical noise might exist when motor with holding brake is in operation but it doesn't affect the functionality of the motor.
- When the holding brake circuit is closed (holding brake deactivated), there might be magnetic flux leakage. Please be aware to not use magnetic sensor around motor with holding brake.
- 24V operating voltage for the holding brake has to be ensured to maintain the functionality of the holding brake. Please consider the voltage dropped over lengthy motor cables due to increase in cable resistance.
- It is recommended to have an isolated switching power supply for the holding brake to prevent malfunctioning of the holding brake in case of voltage drop.
- If the motor is using a magnetic encoder, holding brake wires need to be differentiated between positive and negative terminal to prevent interference to the magnetic encoder due to wrong polarity. It might cause alarm, loss in encoder accuracy or abnormal vibration, etc.

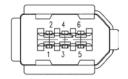
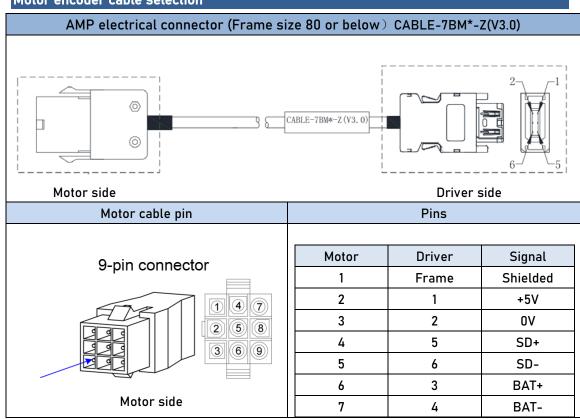

Motor with optical encoder has no such problem, so holding brake circuit can be connected in anyway.

Table 2-7 Holding brake terminal pins in color codes

Motor flange 80 or below	Color	Brown	Blue	Red	Black
	Terminal	24V	0V	24V	0V
	Pin	1	2	6	5
Motor flange 130 or above	Color	Red	ł	Bla	ack
	Terminal	24V		0V	
	Pin	2		1	

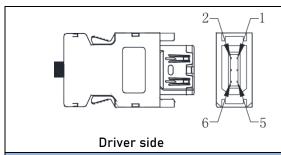

2.6 CN2 Encoder

Connector	Pin	Signal	Description	
	1	VCC5V	Power supply 5V	
	2	GND	Power supply ground	
	3	BAT+	Battery positive terminal	
CN2	4	BAT-	Battery negative terminal	
	5	SD+	SSI Data+	
	6	SD-	SSI Data-	
	Frame	PE	Shield grounding	

- > Please ground both driver and motor PE terminals to avoid any servo alarms.
- It is recommended to use a shielded twisted pair cable not longer than 20m.
- Please leave a space of min. 30cm between motor power cable and encoder to avoid interference.

Pin

Driver


Frame

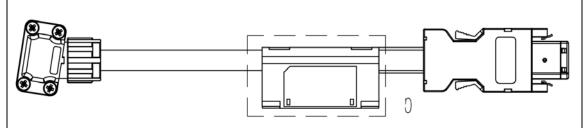
1

Signal Shielded

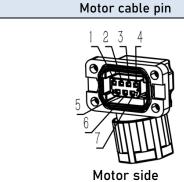
+5V

Aviation connector (Frame size 80 or below) CABLE-7BM*-HH2

Motor side Driver side

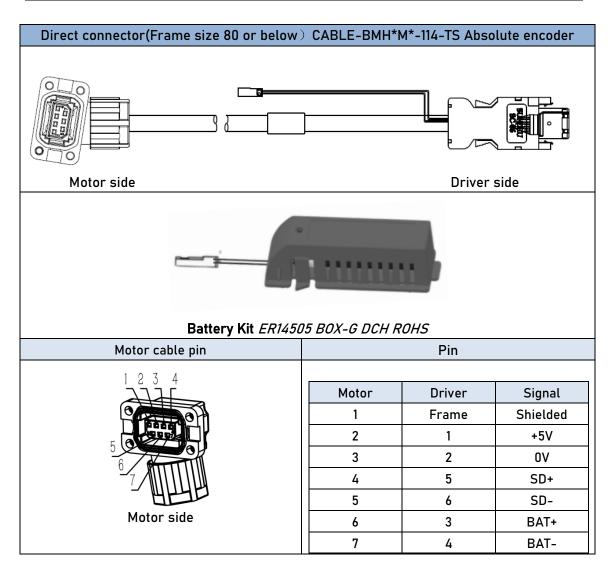

Motor cable pin

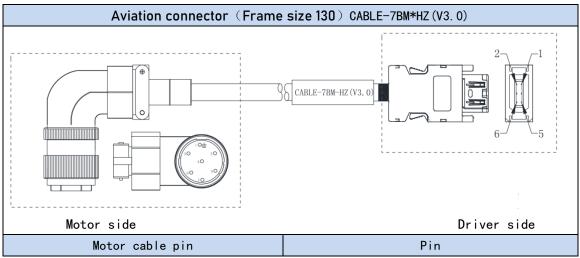
	3	2	0V
	4	5	SD+
	5	6	SD-
	6	3	BAT+
Motor side	7	4	BAT-


Motor

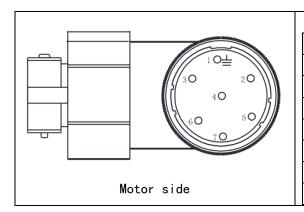
2

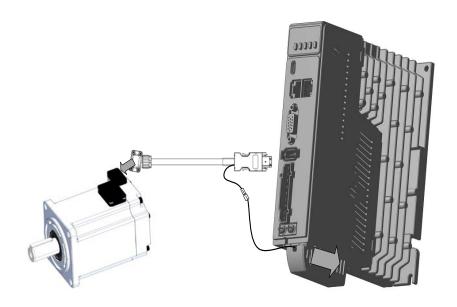
Direct connector(Frame size 80 or below) CABLE-BMAH*M*-124-TS Absolute encoder


Motor side Driver side



Motor	Driver	Signal
1	Frame	Shielded
2	1	+5V
3	2	0V
4	5	SD+
5	6	SD-
6	3	BAT+
7	4	BAT-
·	·	·


Pin



Motor	Driver	Signal
1	Frame	Shielded
2	1	+5V
3	2	OV
4	5	SD+
5	6	SD-
6	3	BAT+
7	4	BAT-

Battery box for absolute encoder


EL7-EC series servo drives come with battery kit installed on the driver or on the encoder cable.

$2.7\,$ USB Type-C Tuning Port

EL7-EC series servo drive can be connected to PC for performance tuning, data monitoring and parameters modifying using a **USB Type-C data cable**. Can be done without the servo drive connecting to main power supply.

Port	Pin Signal		Description
	A4, B4,A9, B9	VCC 5V	Power supply positive terminal 5V
HCD	A12,B12,A1,B1	GND	Power supply negative terminal
USB	A6,B6	D+	USB data positive terminal
Type-C	A7,B7	D-	USB data negative terminal
	Frame	USB_GND	Ground through capacitor

2.8 CN3/CN4 EtherCAT Communication Port

CN3 and CN4 are communication ports for EtherCAT protocol. LAN cable from master device will be connected to CN3 (IN) and CN4 (OUT) will be connected to the next slave device.

Port	Pin	Signal	Description
	1, 9	E_TX+	EtherCAT Data sending positive terminal
	2, 10	E_TX-	EtherCAT Data sending negative terminal
1 16	3, 11	E_RX+	EtherCAT Data receiving positive terminal
	4, 12		
	5, 13		
8 9	6, 14	E_RX-	EtherCAT Data receiving negative terminal
3 3	7, 15		
	8, 16		
	Frame	PE	Shielded ground

2.9 CN6 Safe Torque Off (STO) Port

Port	Pin	Signal	Description	Remarks
	1	0V	Reference ground	Connect to SF1 and SF2
	2	24V	24V power supply	when not in use. Do not use to supply power.
	3	SF1+	Control signal 1 positive input	When SF1 = OFF or SF2 =
	4	SF1-	Control signal 1 negative input	OFF,STO is enabled.

Introduction to Safe Torque Off (STO)

Function: Cut off motor current supply physically (through mechanical means)

STO module (CN6 connector) consists of 2 input channels. It cuts off the motor current supply by blocking of PWM control signal from the power module. When the motor current is cut off, the motor will still move under inertia and stops gradually.

The STO function is set up ready to be used by factory default. Please remove STO connector if it is not needed.

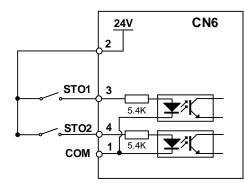
STO functional principle

STO module cuts off the motor current supply and stops motor gradually by blocking of PWM control signal from the power module through 2 isolated circuits. When a STO error occurs, the actual status of STO can be determined by the EDM status feedback.

ST01 Input Status	ST02 Input Status	PWM control signal	Alarm code
ON	ON	Normal	-
ON	OFF	Blocked	Er 1c2
OFF	ON	Blocked	Er 1c1
OFF	OFF	Blocked	Er 1c0

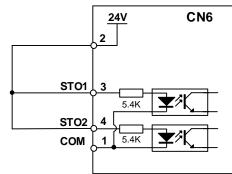
STO wiring diagram

STO in use (External 24V)


External 24V Power Supply STO1 STO2 4 CN6

5.4K

External 0V
Power Supply


COM

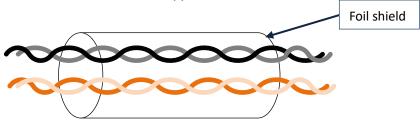
STO in use (Internal 24V)

STO not in use (STO1 & STO2 shorted together)

Internal 24V Power Supply. Connected to STO1 and STO2 when STO not in use. Do not use for other purposes.

- Please take precautions when enabling STO functions as servo drive will lose control over the motion of the motor. Motor might dropped under gravitational pull (vertically mounted load) or moved when external forces are applied to it. Alternatively, motor with holding brake can be chosen.
- > STO is not meant to cut off the power supply of the servo drivers and motors completely. Please power off and wait for a few minutes before starting maintenance work.
- It is recommended to use an isolated power supply for STO signal input as any current leakage might cause STO malfunction.

2.10 CN1 I/O Signal Port


CN1 connector is a DB15 female connector.

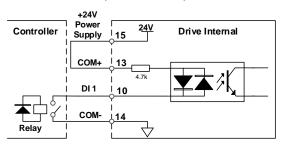
	Por	t	Pin	Signal	Description	Remarks
			1	D01+	SRDY+	Comes Boody Output Cinnel
			6	D01-	SRDY-	Servo Ready Output Signal
-	_	5	3	D02+	ALM+	Alama Outout Cianal
15 orv	10	D00+	2	D02-	ALM-	- Alarm Output Signal
COM-	00		5	D03+	BRK-0FF+	B 10%0 1 16; 1
	00	BOS	4	D03-	BRK-0FF-	Break Off Output Signal
C084+	00	DG2+	10	DI1	РОТ	Positive limit switch
DNL.	C84	502	9	DI2	NOT	Negative limit switch
005		D00+	8	DI3	HOME	Homing switch
11	001		7	DI4	EXT 2	Touch Probe 2
(6	1	11	DI5	EXT 1	Touch Probe 1
			12	DI6	-	Up to user configuration
			13	COM+	Common DI	Common digital input terminal
			14	COM-	Internal 24V Power	Output voltage: 20~28VDC, max
			15	24V+	Supply	current output: 200mA

2.10.1 Selection of I/O signal cable

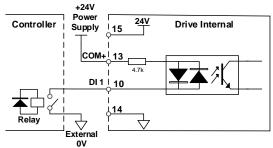
I/O signal cable

To ensure I/O signal to not be affected by electromagnetic interference, a **shielded twisted pair cable** is recommended for this application.

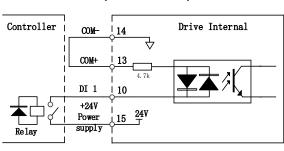
- ightharpoonup Wire diameter $\geqslant 0.14$ mm², foil shielded should be connected to PE terminal.
- Wire length should be as short as possible, not more than 3m.
- Install a surge suppressor in feedback circuit; flyback diode inversely connected in parallel in DC coil and capacitor connected in parallel in AC coil.
- Recommended wire gauge: 24 26AWG
- > I/O signal included DI, DO and relay output signal
- Please keep 30cm away from main power supply cable or motor power cable to avoid electromagnetic interference.

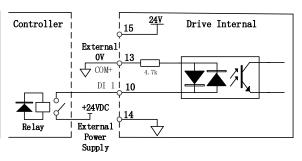


2.10.2 Common input circuit

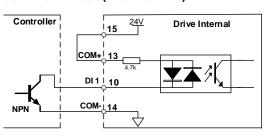

The internal circuit of common input is a bidirectional optocoupler which supports common anode and common cathode configurations. There are 2 types of outputs from master device: Relay output and Open Collector output as shown below.

① Output from master device: Relay

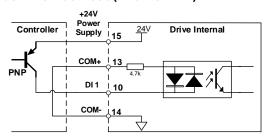

Common Anode(Internal 24V):


Common Cathode (Internal 24V):

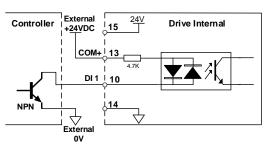
Common Anode(External 24V):

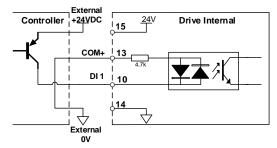


Common Cathode (External 24V):



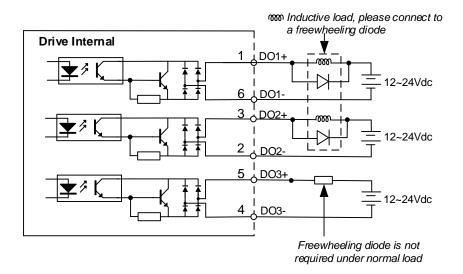
② Output from master device: Open Collector

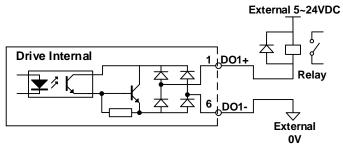

Common Anode(Internal 24V):


Common Cathode (Internal 24V):

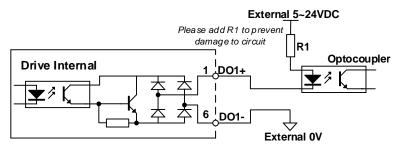
Common Anode(External 24V):

Common Cathode(External 24V):


Please prepare switching power supply with output of 12-24VDC, current ≥ 100mA;

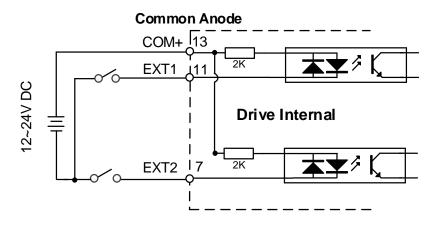

2.10.3 Common output circuit

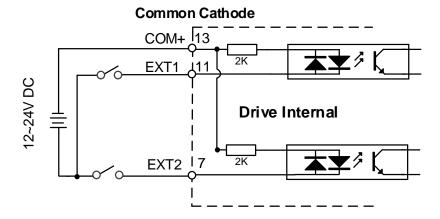
There are 3 common outputs: D01 ~ D03 are double-ended, having an isolated 24v power supply.


Double-ended Digital Outputs

When connected to a relay:

When connected to optocoupler:




- Power supply is provided by user. Please be aware that reversed power supply polarity might cause damage to the driver.
- When it is an open collector output, max current: 50mA, max supplying voltage: 25V. Please ensure the switching power supply fulfills the conditions.
- > If the load is an inductive load such as a relay, please connect a flyback diode in parallel in reverse. A wrong installation of the flyback diode might cause damage to the driver.

2.10.4 Probe input circuit

The internal circuit of probe input is a bidirectional optocoupler.

2.10.5 DI signal function configuration

Table 2-8 Default DI signal functions

CNII Din				Factory default			
CN1 Pin	Signal	Parameter	Default function	Set Value	Polarity	Status	
13	DI COM	-	Common Digital Input	0x0	-	-	
10	DI1	PA4.00	Positive limit switch (POT)	0x1	NO	OFF	
9	DI2	PA4.01	Negative limit switch (NOT)	0x2	NO	OFF	
8	DI3	PA4.02	Home switch (HOME)	0x16	NO	OFF	
12	DI6	PA4.05	User configurable	-	-	-	

^{**}NO: Normally Open

When limit switch or emergency stop is used, POT, NOT and E-STOP signal will be normally close (NC) by default. Please make sure there is no safety concern if these signals need to be set to normally open (NO).

Relevant parameters

	Label	Input selection DI1	Mode		F	
PA4.00	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2400h
	Label	Input selection DI2	Mode		F	
PA4.01	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2401h
	Label	Input selection DI3	Mode		F	
PA4.02	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2402h
	Label	Input selection DI4	Mode		F	
PA4.03	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2403h
	Label	Input selection DI5	Mode		F	
PA4.04	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2404h
	Label	Input selection DI6	Mode		F	
PA4.05	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2405h

Digital input DI allocation using hexadecimal system

		Set value		
Input	Symbol	Normally	Normally	0x60FD(bit)
		open	close	
Invalid	Ī	0h	-	×
Positive limit switch	POT	1h	81h	Bit1
Negative limit switch	NOT	2h	82h	Bit0
Clear alarm	A-CLR	4h	-	×
Forced alarm	E-STOP	14h	94h	×
Home switch	HOME-SWITCH	16h	96h	Bit2

- Please don't set anything other than listed in table above.
- · Normally open: Valid when input = ON Normally close: Valid when input = OFF
- Er210 might occur if same function is allocated to different channels at the same time
- · Channel that has no value doesn't affect driver motion.
- · Front panel is of hexadecimal system.

PA4.00 - PA4.05corresponds to DI1 - DI6. External sensors can be connected if the parameters are all set to 0. Controller will read 60FD bit4 - 11 to get DI1 - DI6 actual status.

2.10.6 DO signal function configuration

Table 2-9 DO signal functions by default

CNII Di-	Cianal	Danamatan	Default function	Factory default			
CN1 Pin	Signal	Parameter	Default function	Set Value	Polarity	Status	
1	D01+	DA / 10	Camua Dandy (C. DDV)	0x01	NO	0FF	
6	D01+	PA4.10	Servo Ready (S-RDY)			UFF	
3	D01+	DA / 11	DA / 11 Alama / ALM)		NO	OFF	
2	D01+	PA4.11	Alarm (ALM)	0x03	NO	UFF	
5	D01+	DA / 12	External brake released		NO	OFF	
4	D01+	PA4.12	(BRK-OFF)	0x04	INU	UFF	

^{**} NO: Normally Open

Relevant parameters

it parailit						
	Label	Output selection DO1	Mode		F	
PA4.10	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2410h
	Label	Output selection DO2	Mode		F	
PA4.11	Range	0x0~0xFF	Default	0x0	Unit	ı
	Activation	Immediate			Index	2411h
	Label	Output selection DO3	Mode		F	
PA4.12	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2412h

Digital output DO allocation using hexadecimal system.

		Set value			
Output	Symbol	Normally open	Normally close		
Master device control	_	00h	-		
Alarm	ALM	01h	81h		
Servo-Ready	S-RDY	02h	82h		
External brake released	BRK-OFF	03h	83h		
Positioning completed	INP	04h	84h		
At-speed	AT-SPEED	05h	85h		
Torque limit signal	TLC	06h	86h		
Zero speed clamp detection	ZSP	07h	87h		
Velocity coincidence	V-COIN	08h	88h		
Position command ON/OFF	P-CMD	0Bh	8Bh		
Velocity limit signal	V-LIMIT	0Dh	8Dh		
Velocity command ON/OFF	V-CMD	0Fh	8Fh		
Servo status	SRV-ST	12h	92h		
Homing done	HOME-OK	22h	A2h		
Position comparison	CMP-OUT	14h	94h		

- Please don't set any other than the outputs listed in the table above.
- Normally open: Active low
- · Normally close: Active high
- · Front panel is of hexadecimal system.

PA4.10 - PA4.12 corresponds to DO1 – DO3. If all parameters are set to 0, master device controls the outputs, object dictionary 0x60FE sub-index 01 bit16-18 corresponds to DO1-DO3.

2.11 CN5 Frequency divider pulse output port

Port	Diagram	Pin	Signal	Label
		11	A+	Motor encoder phase A frequency divider output
	11 12	12	A-	Notor encoder phase A frequency divider output
	11 12	9	B+	Mater encoder phase P frequency divider output
		10	B-	Motor encoder phase B frequency divider output
		7	Z+	Mater anader whose 7 frequency divider output
CNIE		8	Z-	Motor encoder phase Z frequency divider output
CN5		5	OCZ	Motor encoder Z-signal OC output
		6	GND	Motor encoder Z-signal OF output reference ground
		3	/	/
	1 2	4	/	/
	1 2	1	PE	Shield grounding
		2	/	/

^{*}Please use stranded shielded cable ≥ 0.14 mm² with shield foil grounded to PE terminal.

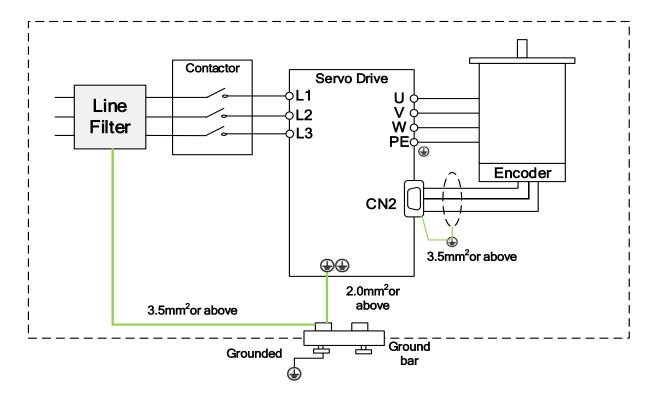
Encoder signal after frequency divider circuit is output as differential signal. It provides feedback signal for controller using position control mode. Please use differential or optocoupler receiving circuit for controller. A terminal resistor needs to be installed in the differential signal input circuit. Resistance of the terminal resistor is as accordance to actual use.

Differential Connection:

If controller input circuit is not an optocoupler input circuit but a differential receiving circuit, please connect CN5 pin 6 (OC reference ground) to GND of controller differential receiving circuit.

^{**}Keep it shorter than 3 meters and away from any power cables.

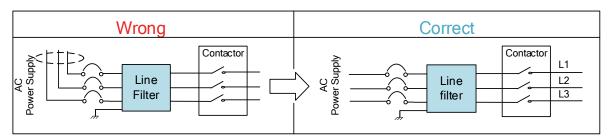
Encoder Z-phase frequency divider output:


2.12 Measures against electromagnetic interference

To reduce interference, please take the following measures:

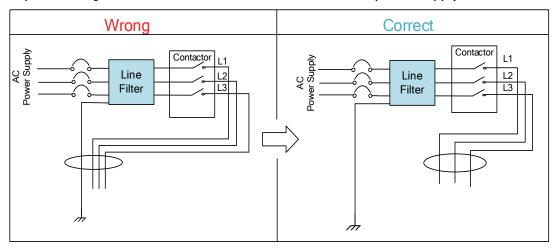
- I/O signal cable > 3m; Encoder cable > 20m
- > Use cable with larger diameter for grounding
 - ①Grounding resistance > 100Ω
 - ②When there are multiple drivers connected in parallel, PE terminal of the main power supply and ground terminal of servo drives must be connected to copper ground bar in the electrical cabinet and the copper ground bar needs to be connected to the metal frame of the cabinet.
- Please install a line filter on main power supply cable to prevent interference from radio frequency.
- In order to prevent malfunctions caused by electromagnetic interference, please take following measures:
 - (1) Install master device and line filter close to the servo drive
 - (2) Install surge suppressor for relay and contactor
 - ③ Please separate signal/encoder cable from power cable with a space of at least 30cm
 - (4) Install a line filter for the main power supply if a device with high frequency generation such as a welding machine exists nearby

2.12.1 Grounding connection and other anti-interference wiring connections

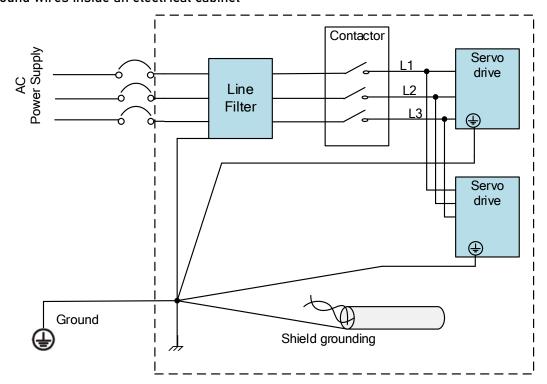


- > Servo motor frame should be grounded. Please connect the PE terminal of servo motor and servo drive and ground them together to reduce interference.
- > Ground both ends of the foil shield of encoder cable.

2.12.2 Using line filter


To reduce interference from main power supply cable and to prevent from affecting other sensitive components around the servo drive, please choose a line filter based on actual supply current. Please do be aware of the following mistake when installing a line filter.

Do not band the main power supply cable together.



Separate the ground wire from the line filter and the main power supply cable.

Ground wires inside an electrical cabinet

Chapter 3 Parameter

3.1 Parameter List

Panel Display as follows:

Parameter Valid mode Description

CSP: Valid in cyclic synchronous position mode CSV: Valid in cyclic synchronous velocity mode CST: Valid in cyclic synchronous torque mode

HM: Valid in homing mode

PP: Valid in profile position mode PV: Valid in profile velocity mode PT: Valid in profile torque mode

F: Valid in all modes

3.1.1 Servo drive parameter

Label	EtherCAT Address	Panel display	Default	Activation
Model-following bandwidth	2000h	PA 000	1	Immediate
Control Mode Settings	2001h	PA 001	9	After restart
Real time Auto Gain	2002h	PA 002	0x001	Immediate
Adjusting	200211	PA 002	00001	iriiriediale
Real time auto stiffness	2003h	PA 003	70	Immediate
adjusting	200311	PA 003	70	irrirriediale
Inertia ratio	2004h	PA 004	250	Immediate
Command polarity inversion	2006h	PA 006	0	After restart
Probe signal polarity settings	2007h	PA 007	3	After restart
Command pulse counts per	2008h	PA 008	0	After restart
revolution	200611	PA 006	U	Alterrestart
1st command frequency				
divider/multiplier	2009h	PA 009	1	After restart
numerator				
1st command frequency				
divider/multiplier	2010h	PA 010	1	After restart
denominator				
Encoder pulse output per	2011	PA 011	2500	After reeter
revolution	2011	PAUIT	2500	After restart

Pulse output logic inversion	2012	PA 012	0	After restart
1 st Torque Limit	2013h	PA 013	300	Immediate
Excessive Position	2014h	PA 014	30	Immediate
Deviation Settings				
Absolute Encoder settings	2015h	PA 015	0	After restart
Regenerative resistance	2016h	PA 016	100	Immediate
Regenerative resistor power rating	2017h	PA 017	50	Immediate
Friction compensation setting	2019h	PA 019	1000	Immediate
EtherCAT slave ID	2023h	PA 023	2	After restart
Source of slave ID	2024h	PA 024	1	After restart
Synchronous compensation time 1	2025h	PA 025	10	After restart
Synchronous compensation time 2	2026h	PA 026	50	After restart
Synchronization mode				
command delay cycle	2027h	PA 027	0	After restart
counts				
CSP mode safe self-running position setting	2028h	PA 028	10	Immediate

Label	EtherCAT Address	Panel display	Default	Activation
1 st position loop gain	2100h	PA 100	320	Immediate
1 st velocity loop gain	2101h	PA 101	180	Immediate
1 st Integral Time Constant of Velocity Loop	2102h	PA 102	310	Immediate
1 st velocity detection filter	2103h	PA 103	15	Immediate
1 st Torque Filter Time Constant	2104h	PA 104	126	Immediate
2 nd Position Loop Gain	2105h	PA 105	380	Immediate
2 nd velocity loop gain	2106h	PA 106	180	Immediate
2 nd Integral Time Constant of Velocity Loop	2107h	PA 107	10000	Immediate
2 nd velocity detection filter	2108h	PA 108	15	Immediate
2 nd Torque Filter Time Constant	2109h	PA 109	126	Immediate
Velocity feed forward gain	2110h	PA 110	300	Immediate
Velocity feed forward filter time constant	2111h	PA 111	50	Immediate
Torque feed forward gain	2112h	PA 112	0	Immediate
Torque feed forward filter time constant	2113h	PA 113	0	Immediate
Position control gain switching mode	2115h	PA 115	0	Immediate
Position control gain switching level	2117h	PA 117	50	Immediate

Hysteresis at position control switching	2118h	PA 118	33	Immediate
Position gain switching time	2119h	PA 119	33	Immediate
Unique registry	2137h	PA 137	0	Immediate
Unique registry 1	2138h	PA 138	0x0	Immediate
Unique registry 2	2139h	PA 139	0x0	Immediate

Label	EtherCAT Address	Panel display	Default	Activation
Adaptive filtering mode settings	2200h	PA 200	0	Immediate
1 st notch frequency	2201h	PA 201	4000	Immediate
1 st notch bandwidth selection	2202h	PA 202	4	Immediate
1 st notch depth selection	2203h	PA 203	0	Immediate
2 nd notch frequency	2204h	PA 204	4000	Immediate
2 nd notch bandwidth selection	2205h	PA 205	4	Immediate
2 nd notch depth selection	2206h	PA 206	0	Immediate
3 rd notch frequency	2207h	PA 207	4000	Immediate
3 rd notch bandwidth selection	2208h	PA 208	4	Immediate
3 rd notch depth selection	2209h	PA 209	0	Immediate
1 st damping frequency	2214h	PA 214	0	Immediate
2 nd damping frequency	2216h	PA 216	0	Immediate
Position command smoothing filter	2222h	PA 222	300	After stopping
Position command FIR filter	2223h	PA 223	0	Disable
5 th resonant frequency	2231h	PA 231	4000	Immediate
5 th resonant Q value	2232h	PA 232	0	Immediate
5 th anti-resonant frequency	2233h	PA 233	4000	Immediate
5 th anti-resonant Q value	2234h	PA 234	0	Immediate
6 th resonant frequency	2235h	PA 235	4000	Immediate
6 th resonant Q value	2236h	PA 236	0	Immediate
6 th anti-resonant frequency	2237h	PA 237	4000	Immediate
6 th anti-resonant Q value Adjustment mode	2238h 2248h	PA 238 PA 248	0	Immediate Immediate
MFC type	2240H	PA 250	0	Immediate
Velocity feedforward compensation coefficient	2250H 2251h	PA 251	0	Immediate
Torque feedforward compensation coefficient	2252h	PA 252	0	Immediate
Dynamic friction compensation coefficient	2253h	PA 253	0	Immediate
Overtravel time coefficient	2254h	PA 254	0	Immediate
Overtravel suppression gain	2255h	PA 255	0	Immediate

Label	EtherCAT Address	Panel display	Default	Activation
Acceleration time settings	2312h	PA 312	0	Immediate
Deceleration time settings	2313h	PA 313	0	Immediate
Sigmoid acceleration/ deceleration settings	2314h	PA 314	0	Disable
Zero speed clamp function	2315h	PA 315	0	Immediate
Zero speed clamp level	2316h	PA 316	30	Immediate
Zero speed clamp static time	2323h	PA 323	0	Immediate

Label	EtherCAT Address	Panel display	Default	Activation
Input selection DI1	2400h	PA 400	0x0	Immediate
Input selection DI2	2401h	PA 401	0x0	Immediate
Input selection DI3	2402h	PA 402	0x0	Immediate
Input selection DI4	2403h	PA 403	0x0	Immediate
Input selection DI5	2404h	PA 404	0x0	Immediate
Input selection DI6	2405h	PA 405	0x0	Immediate
Output selection DO1	2410h	PA 410	0x0	Immediate
Output selection DO2	2411h	PA 411	0x0	Immediate
Output selection DO3	2412h	PA 412	0x0	Immediate
Positioning complete range	2431h	PA 431	20	Immediate
Positioning complete output setting	2432h	PA 432	1	Immediate
INP positioning delay time	2433h	PA 433	0	Immediate
Zero speed	2434h	PA 434	50	Immediate
Velocity coincidence range	2435h	PA 435	50 Immediate	
Arrival velocity	2436h	PA 436	1000 Immediat	
Motor power-off delay time	2437h	PA 437	100	Immediate
Delay time for holding brake release	2438h	PA 438	0	Immediate
Holding brake activation velocity	2439h	PA 439	30	Immediate
Emergency stop function	2443h	PA 443	0	Immediate
Torque compensation time upon enabling	2448h	PA448	0	Immediate

Label	EtherCAT Address	Panel display	Default	Activation
Driver prohibition input settings	2504h	PA 504	0	Immediate
Servo-off mode	2506h	PA 506	0	After restart
Main power-off detection time	2509h	PA 509	50	Immediate
Servo-off due to alarm mode	2510h	PA 510	0	After restart
Servo braking torque setting	2511h	PA 511	0	Immediate

Overload level setting	2512h	PA 512	0	Immediate
Overspeed level settings	2513h	PA 513	0	Immediate
I/O digital filter	2515h	PA 515	10	Immediate
Position unit settings	2520h	PA 520	2	After restart
Torque limit selection	2521h	PA 521	0	Immediate
2 nd torque limit	2522h	PA 522	300	Immediate
LED initial status	2528h	PA 528	34	After restart
Torque limit detection time during torque initialization	2537h	PA 537	500	Immediate
3 rd torque limit	2539h	PA 539	80	Immediate
D41 set value	2540h	PA 540	0x30C	Immediate
Frequency divider output – Z-signal polarity	2542h	PA 542	0	After restart
Frequency divider output – Z-signal width	2543h	PA 543	0	After restart
Frequency divider output source	2544h	PA 544	0	After restart
External encoder overspeed feedback threshold	2545h	PA 545	0	Immediate
Vent overload level	2546h	PA 546	0	Immediate

Label	EtherCAT Address	Panel display	Default	Activation		
Encoder zero position compensation	2601h	PA 601	0	After restart		
JOG trial run torque command	2603h	PA 603	350	Immediate		
JOG trial run velocity command	2604h	PA 604	30	Immediate		
Position 3 rd gain valid time	2605h	PA 605	0	Immediate		
Position 3 rd gain scale factor	2606h	PA 606	100	Immediate		
Torque command additional value	2607h	PA 607	0	Immediate		
Positive direction torque compensation value	2608h	PA 608	0	Immediate		
Negative direction torque compensation value	2609h	PA 609	0	Immediate		
Torque compensation upon enabling	2610h	PA 610	0x0	Immediate		
Current response settings	2611h	PA 611	100	Immediate		
Max. time to stop after disabling	2614h	PA 614	500	Immediate		
Trial run distance	2620h	PA 620	10	Immediate		
Trial run waiting time	2621h	PA 621	300	Immediate		
No. of trial run cycles	2622h	PA 622	5	Immediate		
Trial run acceleration	2625h	PA 625	200	Immediate		
Velocity observer gain	2628h	PA 628	0	Immediate		

Velocity observer bandwidth	2629h	PA 629	0	Immediate
Frame error window time	2634h	PA 634	100	Immediate
Frame error window	2635h	PA 635	50	Immediate
Absolute value rotation mode denominator setting	2654h	PA 654	0	After restart
Rotor blocked torque limit threshold	2656h	PA 656	300	Immediate
Blocked rotor alarm delay time	2657h	PA 657	400	Immediate
Homing mode position deviation threshold	2659h	PA 659	8	Immediate
Z-signal sustaining time	2661h	PA 661	10	Immediate
Absolute multiturn data upper limit	2663h	PA 663	0	After restart

Label	EtherCAT Address	Panel display	Default	Activation
Motor model	-	PA 715	0x200	After restart
Encoder	-	PA 716	Encoder	After restart
External grating ruler precision	-	PA 754	100	After restart

3.1.2 Manufacturer parameter

Index	Sub index	Label	Unit	Default	Min	Max
	01	RPDO length		8	0	64
	02	TPDO length		17	0	64
	03	The number of RPDO		1	0	4
	04	The number of TPDO		1	0	2
	05	Sync0 Watchdog counter		0	0	65535
	06	Reserved			0	65535
	07	Sync0 Watchdog limit		4	0	65535
	08	Sync0 Drift watchdog counter		0	0	65535
5004	09	Sync0 Drift watchdog limit		4	0	65535
	0A	SM2 watchdog counter		0	0	65535
	0B	SM2 Watchdog limit		4	0	65535
	0C	Application layer SM2/Sync0 watchdog counter		0		
	0D	Application layer SM2/Sync0 watchdog limit		4		
	0E	Reserved			0	500

	0F	Time interval between SM2 and Sync0	ns	0	0	1000000
5006	00	Synchronous alarm		0xFFFF	0	0xFFFF
5010	00	setting PDO watchdog overtime	mo	0	0	60000
5010	04	Homing setting	ms	5	U	60000
3012	04	Set synchronization	_	3		
5400	01	cycle minimum value	us	250	125	1000
5400	02	Set synchronization cycle maximum value	us	10000	4000	20000
01		Absolute encoder multiturn number	r	-	-	-
		Encoder single turn position	Pulse	-	-	-
	03	Encoder feedback position 32 bit low	Pulse	-	-	-
5500	04	Encoder feedback	Pulse	-	-	-
5500		position 32 bit high				
	05	The actual mechanical position 32 bit low	Unit	-	-	-
	06	The actual mechanical position 32 bit high	Unit	-	-	-
	07	Number of encoder communication		-	-	-
	01	exceptions Motor Speed	r/min	_	_	_
	02	Speed of position command	r/min	-	-	-
	03	Speed command	r/min	_	-	-
	04	Actual torque	0.1%	_	_	_
	05	Torque command	0.1%	_	_	_
	06	Relative position error	Pulse	_	_	_
	07	Internal position	Pulse	-	-	-
	08	Overload ratio	0.1%	_	_	_
5501	09	Discharge load rate	0.1%	_	_	_
	0A	Inertia ratio	%	_	_	_
	0B	Actual positive torque limit value	0.1%	-	-	-
	0C	Actual negative torque limit value	0.1%	-	-	-
	0D	U phase current detect value	0.1%	-	-	-
	0E	W phase current detect value	0.1%	-	-	-
	01	DI input signal	-	-	-	-
	02	SO output signal	-	-	-	-
	03	Reserved	-	-	-	-
5502	04	Reserved	-	-	-	-
	05	Bus voltage	V	-	-	-
	06	Temperature	°C	-	-	-
	07	Power on time	S	-	-	-

3.1.3 Motion parameter starting with object dictionary 6000

Index	Sub-index	Label	Unit	Default
603F	0	Error code	-	0x0
6040	0	Control word	-	0x0
6041	0	Status word	-	0x0
605A	0	Quick stop option code	-	2
605B	0	Shutdown Option Code	-	0
605C	0	Disable Operation Option Code	-	0
605D	0	Halt Option Code	-	1
605E	0	Fault Reaction Option Code	-	0
6060	0	Mode of Operation	-	8
6061	0	Mode of Operation display	-	0
6062	0	Position Demand Value	Comman d unit	0
6063	0	Position Actual Internal Value	Encoder unit	0
6064	0	Position Actual Value	Command	-
6065	0	Follow Error Window	Command	30000
6066	0	Follow Error Time Out	ms	10
6067	0	Position window	Command unit/s	0
6068	0	Position window time	ms	0
606B	0	Velocity Demand Value	Command unit/s	0
606C	0	Velocity Actual Value	Command unit/s	0
606D	0	Velocity window	Command unit /s	10
606E	0	Velocity window time	ms	0
606F	0	Velocity Threshold	Command unit/s	10
6070	0	Velocity Threshold Time	ms	100
6071	0	Target torque	0.001	0
6072	0	Maximum torque	0.001	3000
6073	0	Maximum current	0.001	3000
6074	0	Torque Demand	0.001	0
6075	0	Motor Rated Current	mA	3000
6076	0	Motor Rated Torque	mN.m	0
6077	0	Torque Actual Value	0.1%	0
6078	0	Current Actual Value	0.1%	0
6079	0	DC Link Circuit Voltage	mV	0
607A	0	Target position	Command unit	0

		1		1
607C	0	Home Offset	Command unit	0
	1	Min Position Limit	Command unit	0
607D	2	Max Position Limit	Command	0
607E	0	Polarity	-	0x0
607F	0	Max Profile Velocity	Command	214748
0071	0	Iviax i Tonic velocity	unit /s	3647
6080	0	Max Motor Speed	r/min	6000
6081	0	Profile velocity	Command unit /s	10000
6083	0	Profile acceleration	Command unit /s²	10000
6084	0	Profile deceleration	Command unit /s²	10000
6085	0	Quick Stop Deceleration	Command unit /s²	100000
6087	0	Torque slope	0.001/s	5000
608F	1	Encoder Increments	Encoder unit	0
	1	Motor Revolutions	r	1
6091	2	Shaft Revolutions	r	1
6092	1	Feed	Command unit/r	10000
6098	0	Homing method	-	19
	1	Speed During Search For Switch	Command unit /s	10000
6099	2	Speed During Search For Zero	Command unit /s	5000
609A	0	Homing acceleration	Command unit /s²	500000
60B0	0	Position Offset	Command unit	0
60B1	0	Velocity Offset	Command unit /s	0
60B2	0	Torque Offset	0.001	0
60B8	0	Touch Probe function	-	0x0
60B9	0	Touch Probe status	-	0x0
60BA	0	Touch Probe 1 Positive Position	Command unit	0
60BB	0	Touch Probe 1 Negative Position	Command	0
60BC	0	Touch Probe 2 Positive Position	Command	0
60BD	0	Touch Probe 2 Negative Position	Command	0
60C5	0	Max Acceleration	Command unit /s²	100000
60C6	0	Max Deceleration	Command unit /s²	100000
60D5	0	Touch Probe 1 Positive Edge Counter	-	0
		Countri		

60D6	0	Touch Probe 1 Negative Edge Counter	-	0
60D7	0	Touch Probe 2 Positive Edge Counter	-	0
60D8	0	Touch Probe 2 Negative Edge Counter	-	0
60E0	0	Positive Torque Limit	0.001	3000
60E1	0	Negative Torque Limit	0.001	3000
60F4	0	Following Error Actual Value	Command unit	0
60FA	0	Control Effort	Command unit /s	0
60FC	0	Position Demand Internal Value	Encoder unit	0
60FD	0	Digital Inputs	-	0x0
60FE	1	Physical Outputs	-	0x0
OULE	2	Bit Mask	-	0x0
60FF	0	Target velocity	Command unit /s	0
6502	0	Supported Drive Modes	-	0x0

3.2 Parameter Function

Panel Display as follows:

Parameter valid under following modes

CSP: Cyclic synchronous position mode CSV: Cyclic synchronous velocity mode CST: Cyclic synchronous torque mode

HM: Homing mode

PP: Profile position mode PV: Profile velocity mode PT: Profile torque mode

F: All modes

3.2.1 [Class 0] Basic Settings

	Label	Model-following bandwidth	Mode		F	
PA0.00	Range	0~5000	Default	1	Unit	0.1Hz
	Activation	Immediate			Index	2000h

Model-following bandwidth, also known as model-following control (MFC), is used to control the position loop to improve the responsiveness to commands, speed up positioning time and reduce following error. The effect is obvious especially in low and medium mechanical stiffness. Use mainly for MFC or ZTC tuning.

Value	Description		
0	Disable the function.		
1	Enable the function to set bandwidth automatically, recommended for most applications. PA0.00=PA1.01		
2	Reserved		
3-9	Invalid		

PA0.00>9: Model-following bandwidth value set by PA0.00.

10<Pr0.00<5000: Specifies the bandwidth.

*Recommended settings for belt application: 30<PA0.00<100.

	Label	Control Mode Settings	Mode	ode		F	
PA0.01	Range	0~9	Default	9	Unit	-	
	Activation	After restart				2001h	

Set value to use following control modes:

Value	Content	Details
0-8	Reserved	Reserved
9	EtherCAT mode	PP/PV/PT/HM/CSP/CSV/CST

	Label	Real time Auto Gain Adjusting Mode		F		
PA0.02	Range	0x0~0xFFF	Default	0x001	Unit	_
	Activation	Immediate			Index	2002h

Set up the mode of the real time auto gain adjusting.

Data bits	Category	Settings	Application			
0x00_	Motion setting mode	motion charact to select mode mode 2 when	otion setting mode, which can be selected according to the teristics or setting requirements. Generally, it is recommended a 1 with good generality when there is no special requirement, rapid positioning is needed If mode 1 and mode 2 cannot meet ats, please choose mode 0.			
		0:Manual	0:Manual PA0.03 invalid. Gain value must be adjusted manually a accordingly.			
		1:Standard	PA0.03 valid. Quick gain adjusting can be achieved by changing PA0.03 stiffness value. Gain switching is not us in this mode, suitable for applications with requirements f stability.			
		2:Positioning	PA0.03 valid. Quick gain adjusting can be achieved by changing PA0.03 stiffness value. This mode is suitable for applications requiring quick positioning. Not recommended for load mounted vertical to ground, or please compensate for the load using PA6.07			
0x0_0	Load type setting	Used to select mechanical str	the load type, choose according to load-inertia ratio and ucture.			
		0: Rigid structure	This mode prioritizes system responsiveness. Use this mode when there is a relatively rigid structure with low load inertia. Typical application including directly connected high-precision gearbox, lead screw, gears, etc.			
		1:High inertia	For applications with higher load inertia (10 times or above), gain settings take into account both machine stability and responsiveness. Not recommended to set stiffness above 15 for high load inertia.			
		2: Flexible structure	This mode prioritizes system stability. Use this mode when there is low rigidity structure with high load inertia. Typical applications included belts and chains.			
0x_00	Reserved					

The setting type combination is a hexadecimal standard, as follows:

Setting type combination	Application type
0X000	Rigid structure + Manual
0X001	Rigid structure +Standard
0X002	Rigid structure +Positioning
0X010	High inertia + Manual
0X011	High inertia + Standard
0X012	High inertia + Positioning
0X020	Flexible structure + Manual
0X021	Flexible structure +Standard
0X022	Flexible structure +Positioning

	Label	Real time auto stiffness adjusting	Mode		F	
PA0.03	Range	50 ~ 81	Default	70	Unit	
	Activation	Immediate			Index	2003h

Valid when PA0.03 = 1.2

- Lower values ensure better system responsiveness and mechanical stiffness but machine vibration might occur, please set accordingly. Please stop the motor before doing any changes to the stiffness settings.
- When PA0.02 = 0x010, please set stiffness level to around 65.

	Label	Inertia ratio	Mode		F	
PA0.04	Range	0~20000	Default	250	Unit	%
	Activation	Immediate			Index	2004h

PA0.04=(load inertia/motor rotational inertia)×100%

Set inertia ratio according to actual load inertia. When both are uniform, actual motor velocity loop responsiveness and gain settings will be consistent. If inertia ratio is greater than actual value, velocity loop gain settings will be higher and vice versa. For motor with high inertia, PA0.04 can be left unfilled but optimal setting of PA0.04 could improve system performance.

	Label	Command polarity inversion	Mode		F	
PA0.06	Range	0~1	Default	0	Unit	_
	Activation	After restart			Index	2006h

Used to change the rotational direction of the motor.

Set value	Details
0	Polarity of the command is not inversed. The direction of rotation is consistent with the polarity of command.
1	Polarity of command is inversed. The direction of rotation is opposite to the polarity of command.

Note: Rotational direction of the motor is recommended to be set through object dictionary 607E. However, PA0.06 has higher priority than object dictionary 607E. 607E only takes effect when PA0.06 = 0.

	Label	Probe signal polarity settings	Mode		F	
PA0.07	Range	0~3	Default	3	Unit	_
	Activation	After restart			Index	2007h

Probe signal polarity settings take effect when PA0.01 = 9

Set value	Details
0	Probe 1 & 2 polarity inversion
1	Probe 2 polarity inversion
2	Probe 1 polarity inversion
3	No polarity inversion for probe 1 & 2

If PA0.01 \neq 9, PA0.07 = Command pulse input mode settings.

Command pulse input

Command Polarity inversion (PA0.06)	Command pulse input mode settings (PA0.07)	Command Pulse Mode	Positive signal	Negative signal
	0 or 2	90°phase difference 2 phase pulse (Phase A+ Phase B)	A tl tl	t1 t
[0]	1	CW pulse sequence + CCW pulse sequence		t3 t2 t2
	[3]	Pulse sequence + Directional symbol	t4 t5 "H"	t4 t5 "L" t6 t6 t6
	0 or 2	90°phase difference 2 phase pulse (Phase A+Phase B)	A 11 t1 B 11 t1	
1	1	CW pulse sequence + CCW pulse sequence	12 12	t3 t2 t2
	□3	Pulse sequence + Directional symbol	14 t5 t6	t6 t6 "H" t6

Command pulse input signal max. frequency and min. duration needed

Command pulse input interface		May Fraguency	Min. duration needed (μs)					
		Max. Frequency	t1	t2	t3	t4	t5	t6
Pulse sequence	Differential	500 kHz	2	1	1	1	1	1
interface	Open collector	200 kHz	5	2.5	2.5	2.5	2.5	2.5

Please set $>0.1\mu s$ for the duration between rising and falling edge of command pulse input signal.

1 revolution with 2500 pulses 2-phase pulse input when PA0.07=0 or 2, PA0.08 = 10000;

1 revolution with 10000 pulses 1-phase pulse input when PA0.07=1 or 3, PA0.08 = 10000

B40.00	Label	Command pulse count per revolution	Mode		F		
PA0.08	Range	0~8388608	Default	0	Unit	P-	
	Activation	After restart			Index	2008h	
	Pulses per revolution can be set using object dictionary 608F, 6091, 6092. However, PA0.08						
	has higher priority.						

BA0 00	Label	1st command frequency divider/multiplier numerator	Mode		F		
PA0.09	Range	1~2147483647	Default	1	Unit	P-	
	Activation	After restart			Index	2009h	
	This parameter correspond s to object dictionary 6091-01. Modifying this parameter is the						

same as changing object dictionary 6091-01 value.

Valid when PA0.08 = 0.

PA0.10	Label	1st command frequency divider/multiplier denominator	Mode		F	
	Range	1~2147483647	Default	1	Unit	P-
	Activation	After restart			Index	2010h
	This parame	ter correspond s to object dictionary 6	091-02. Mo	difying this p	arameter i	s the
	same as cha	anging object dictionary 6091-02 value.				
	Valid when F	40.08 = 0.				

	Label	Encoder pulse output per revolution	Mode		F				
PA0.11	Range	0~65535	Default	2500	Unit	P/r			
	Activation	After restart			Index	2011			
	Including rising and falling edge of encoder phase A and B,								

encoder actual differential output pulse count = PA0.011 x 4 Please make sure: Motor rotational speed x PA0.11 x $4 \le 1$ MHz. If exceeds, alarm Er280 might occur.

	Label	Pulse output logic inversion	Mode		F	
PA0.12	Range	0~1	Default	0	Unit	-
	Activation	After restart			Index	2012

To set phase B logic and output source from encoder pulse output. To inverse B-Phase pulse logic and change the phase relation between Phase A and Phase B

Pulse output logic inversion

PA0.12	Phase B logic	CW direction	CCW direction
[0]	Not inverted	A-phase	A-phase
[0]	Not inverted	B-phase	B-phase
	lavoria d	A-phase	A-phase
[1]	Inverted	B-phase	B-phase

	Label	1 st Torque Limit	Mode		F	
PA0.13	Range	0~500	Default	300	Unit	%
	Activation	Immediate			Index	2013h

^{1&}lt;sup>st</sup> torque limit is set according to ratio percentage of motor rated current. Do not exceed max driver output current.

Actual torque limit is the smaller value of PA0.13 and object dictionary 6072

PA0.14	Label	Excessive Position Deviation Settings	Mode	PP	НМ	CSP
	Range	0~500	Default	30	Unit	0.1rev
	Activation	Immediate			Index	2014h

Please set threshold value for position deviation accordingly. Default factory setting = 30, Er180 will be triggered if positive deviation is in excess of 3 revolutions.

	Label	Absolute Encoder settings	Mode	PP	НМ	CSP
PA0.15	Range	0~32767	Default	0	Unit	
	Activation	Immediate			Index	2015h

0: Incremental mode:

Used as an incremental encoder. Doesn't retain position data on power off. Unlimited travel distance.

1: Multiturn linear mode:

Used as a multiturn absolute encoder. Retrain position data on power off. For applications with fixed travel distance and no multiturn data overflow.

2: Multiturn rotary mode:

Used as a multiturn absolute encoder. Retrain position data on power off. Actual data feedback in between 0-(PA6.63). Unlimited travel distance.

3: Single turn absolute mode:

Used when travel distance is within 1 revolution of the encoder. Data overflow will trigger

- **5:** Clear multiturn alarm and activate multiturn absolute function. Will switch to multiturn mode once alarm cleared, if remains at 5 after 3s, please solve according to Er153.
- 9: Clear multiturn position, reset multiturn alarm and activate multiturn absolute function. Will switch to multiturn mode once alarm cleared, if remains at 9 after 3s, please solve according to Er153. Please disable axis before setting to 9 and home the axis before using.

PA0.16	Label	Regenerative resistance	Mode	F
--------	-------	-------------------------	------	---

	Range	25~500	Default	100	Unit	Ohm
	Activation	Immediate			Index	2016h
,	To set resista	ance value of regenerative resistor				

	Label	Regenerative resistor power rating	Mode		F	
PA0.17	Range	20~5000	Default	50	Unit	W
	Activation	Immediate			Index	2017h

To set power rating of regenerative resistor.

Drive	Resistance(Ω)	Power Rating(W)
EL8-EC400F	100	50
EL8-EC750F	50	75
EL8-EC1000F	50	75
EL8-EC1500F	50	80
EL8-EC2000F	50	80

PA0.16 and PA0.17 determines the threshold value of Er 120. Please set accordingly or it might trigger false alarm or damage to servo driver.

Note: If external regenerative resistor is used, please set according to its labeled power rating.

	Label	Friction compensation setting	Mode		F	
PA0.19	Range	0~1000	Default	0	Unit	-
	Activation	Immediate			Index	2022h

Friction compensation setting = 0, default = 1;

Friction compensation setting = x, indicating x+1/10000 of friction compensation runway;

	Label	EtherCAT slave ID	Mode		F	
PA0.23	Range	0~32767	Default	2	Unit	-
	Activation	After restart			Index	2023h
Set ID number of the slave station under EtherCAT mode						
	Label	Source of slave ID	Mode		F	
PA0.24	Range	0~1	Default	1	Unit	-
PA0.24	Range Activation	0~1 After restart	Default	1	Unit Index	- 2024h
PA0.24	Activation			1		- 2024h

	Label	Synchronous compensation time 1	Mode		CSP		
PA0.25	Range	1~100	Default	10	Unit	0.1us	
	Activation	After restart			Index	2025h	
	Synchronous	dithering compensation range. Used for master device with poor					
	synchronizat	ion.					

PA0.26 Label Synchronous compensation time 2	Mode	CSP
--	------	-----

Range	1~2000	Default	50	Unit	0.1us			
Activation	After restart			Index	2026h			
Synchronous	Synchronous dithering compensation range. Used for master device with poor							
synchronizat	synchronization.							

La	Label	Synchronization mode command delay cycle counts	Mode		CSP			
PAU.21	Range	1~50	Default	0	Unit	-		
	Activation	After restart			Index	2027h		
	Driver delays N position loop cycle counts to receive position command from master device.							
	To solve mot	tor litter caused by master device with	noor synchi	onization				

PA0.28	Label	CSP mode safe self-running position setting	Mode		CSP				
PAU.20	Range	0~10000	Default	10	Unit	-			
	Activation	Immediate			Index	2028h			
	Synchronous dithering compensation range. Used for master device with poor								
	synchroniza	tion.							

3.2.2 【Class 1】 Gain Adjustments

	Label	1 st position loop gain	Mode	PP	НМ	CSP
PA1.00	Range	0~30000	Default	320	Unit	0.1/s
	Activation	Immediate			Index	2100h
	Higher positi	ion loop gain value improves the res	ponsiveness	of the se	rvo driver a	and lessens
	the positioning	ng time.				
	Position loop	gain value shouldn't exceed respor	siveness of	the mecha	anical syst	em and take
	in considera	tion velocity loop gain, if not it might	cause vibra	tion, mech	anical nois	se and
	overtravel.					
	As velocity lo	oop gain is based on position loop ga	ain, please s	et both va	lues acco	rdingly.
	Recommend	ded range: 1.2≶PA1.00/PA1.01≶1.8	3			

	Label	1 st velocity loop gain	loop gain Mode						
PA1.01	Range	1~32767	Default	180	Unit	0.1Hz			
	Activation	Immediate			Index	2101h			
	To determine the responsiveness of the velocity loop. If inertia ratio of PA0.04 is uniform with								
	actual inertia	ual inertia ratio, velocity loop responsiveness = PA1.01.							

To increase position loop gain and improve responsiveness of the whole system, velocity loop gain must be set at higher value. Please notice that if the velocity loop gain is too high, it might cause vibration.

PA1.02 Labe	el	1 st Integral Time Constant of Velocity Loop	Mode	F
-------------	----	--	------	---

Range	1~10000	Default	310	Unit	0.1ms
Activation	Immediate			Index	2102h

If auto gain adjusting function is not enabled, PA1.02 is activated.

The lower the set value, the closer the lag error at stop to 0 but might cause vibration. If the value set is overly large, overshoot, delay of positioning time duration and lowered responsiveness might occur.

Set 10000 to deactivate PA1.02.

Recommended range: 50000≤PA1.01xPA1.02≤150000

For example: Velocity loop gain PA1.01=500(0.1Hz), which is 50Hz. Integral time constant of

velocity loop should be 100(0.1ms)≤PA1.02≤300(0.1ms)

	Label	1 st velocity detection filter	Mode		F	
PA1.03	Range	1~10000	Default	15	Unit	-
	Activation	Immediate			Index	2103h

This filter is a low pass filter. It blocks high frequencies which cause system instability from velocity feedback data. The higher the set value, lower frequencies will be blocked and velocity responsiveness will also be lowered. PA1.03 needs to match velocity loop gain. Please refer to the following table.

Value	Velocity Detection Filter Cut-off Frequency(Hz)	Value	Velocity Detection Filter Cut-off Frequency(Hz)
0	2500	16	750
1	2250	17	700
2	2100	18	650
3	2000	19	600
4	1800	20	550
5	1600	21	500
6	1500	22	450
7	1400	23	400
8	1300	24	350
9	1200	25	300
10	1100	26	250
11	1000	27	200
12	950	28	175
13	900	29	150
14	850	30	125
【15】	800	31	100

	Label	1 st Torque Filter Time Constant	Mode		F	
PA1.04	Range	0~2500	Default	126	Unit	0.01ms
	Activation	Immediate			Index	2104h

To set torque command low-pass filter, add a filter delay time constant to torque command and filter out the high frequencies in the command.

Often used to reduce or eliminate some noise or vibration during motor operation, but it will reduce the responsiveness of current loop, resulting in undermining velocity loop and position loop control. PA1.04 needs to match velocity loop gain.

Recommended range: $1,000,000/(2\pi \times PA1.04) \ge PA1.01 \times 4$

For example: Velocity loop gain PA1.01=180(0.1Hz) which is 18Hz. Time constant of torque

filter should be PA1.01≤221(0.01ms)

If mechanical vibration is due to servo driver, adjusting PA1.04 might eliminate the vibration. The smaller the value, the better the responsiveness but also subjected to machine conditions. If the value is too large, it might lower the responsiveness of current loop. With higher PA1.01 value settings and no resonance, reduce PA1.04 value; With lower PA1.01 value settings, increase PA1.04 value to lower motor noise.

	Label	2 nd Position Loop Gain	Mode	PP	НМ	CSP	
PA1.05	Range	0~30000	Default	380	Unit	0.1/s	
	Activation	Immediate			Index	2105h	
	Label	2 nd velocity loop gain	Mode		F		
PA1.06	Range	1~32767	Default	180	Unit	0.1Hz	
	Activation	Immediate			Index	2106h	
	Label	2 nd Integral Time Constant of	Mode		F		
PA1.07	Labei	Velocity Loop	Wiode	wode			
PA1.07	Range	1~10000	Default	10000	Unit	0.1ms	
	Activation	Immediate			Index	2107h	
	Label	2 nd velocity detection filter	Mode		F		
PA1.08	Range	1~31	Default	15	Unit	-	
	Activation	Immediate			Index	2108h	
	Label	2 nd Torque Filter Time Constant	Mode		F		
PA1.09	Range	0~2500	Default	126	Unit	0.01ms	
	Activation	Immediate			Index	2109h	
	Position loop, velocity loop, velocity detection filter, torque command filter each have 2 pairs						
İ	of gain or time constant (1st and 2nd)						

PA1.10	Label	Velocity feed forward gain	Mode	PP	НМ	CSP
	Range	0~1000	Default	300	Unit	0.10%
	Activation	Immediate			Index	2110h

Used for decreasing following error caused by low responsiveness of velocity loop. Might cause overshoot or increase in noise if set value is too high.

PA1.11	Label	Velocity feed forward filter time constant	Mode	PP	НМ	CSP
	Range	0~6400	Default	50	Unit	0.01ms
	Activation	Immediate			Index	2111h

Set velocity feed forward low pass filter to eliminate high or abnormal frequencies in velocity feed forward command. Often used when position command with low resolution or high electronic gear ration to smoothen velocity feed forward.

Position deviation under constant velocity can be lowered with higher velocity feed forward gain. Please to refer to the equation below.

 $\text{Position deviation[Uint]=} \frac{\textit{Set velocity}[\frac{\textit{Uint}}{\textit{S}}]}{\textit{Position loop gain[Hz]}} \; x \; \frac{100 - \textit{Velocity feed foward gain[\%]}}{100}$

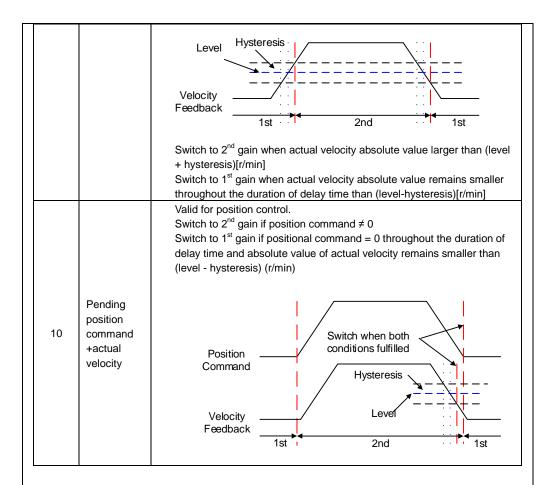
PA1.12 Label Torque feed forward gain Mode	PP	PV	НМ	CSP	CSV
--	----	----	----	-----	-----

Range	0~1000	Default	0	Unit	0.1%
Activation	Immediate			Index	2112h

Before using torque feed forward, please set correct inertia ratio PA0.04. By increasing torque feed forward gain, position deviation on constant acceleration/deceleration can be reduced to close to 0. Under ideal condition and trapezoidal speed profile, position deviation of the whole motion can be reduced to close to 0. In reality, perturbation torque will always exist, hence position deviation can never be 0.


PA1.13	Label	Torque feed forward filter time constant	Mode	PP	PV	НМ	CSP	CSV
	Range	0~6400	Default	0		Unit	0.01	ms
	Activation	Immediate				Index	2113	3h

Low pass filter to eliminate abnormal or high frequencies in torque feed forward command. Usually used when encoder has lower resolution or precision.


Noise reduces if torque feed forward filter time constant is set higher but position deviation will increase at acceleration varied points.

			Position control gain switching				
		Label	mode	Mode		F	
PA	1.15	Range	0~11	Default	0	Unit	-
		Activation	Immediate	•		Index	2115h
	Set ⁄alue	Condition	Gain switching condition				
	0	1 st gain fixed	Fixed on using 1 st gain(PA1.00-PA	1.04)			
	1	2 nd gain fixed	Fixed on using 2 nd gain (PA1.05-Pa	A1.09)			
	2	Reserved					
	3	High set torque	Switch to 2 nd gain when set tor (level + hysteresis)[%] Switch to 1 st gain when set torc (level + hysteresis)[%] Hysteresis Acceleration Level Torque			value sma	
	4	Reserved	Reserved				
	5	High set velocity	Valid for position and velocity of Switch to 2 nd gain when set vel than (level + hysteresis)[r/min]		and absolu	te value la	ırger

For position control mode, set PA1.15=3,5,6,9,10;

For velocity control mode, set PA1.15=3,5,9;

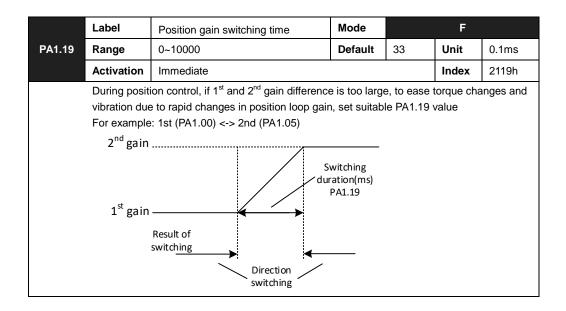
** Above 'level' and 'hysteresis' are in correspondence to PA1.17 Position control gain switching level and PA1.18 Hysteresis at position control switching.

	Label	Position control gain switching level	Mode		F	
PA1.17	Range	0~20000	Default	50	Unit	As set
	Activation	Immediate			Index	2117h

Set threshold value for gain switching to occur.

Unit is mode dependent.

Switching condition	Unit					
Position	Encoder pulse count					
Velocity	RPM					
Torque	%					


Please set level ≥ hysteresis

PA1.18	Label	Hysteresis at position control switching	Mode	F		
	Range	0~20000	Default	33	Unit	As PA1.17
	Activation	Immediate			Index	2118h

To eliminate the instability of gain switching. Used in combination with PA1.17 If level<

hysteresis, drive will set internally hysteresis = level.

3.2.3 【Class 2】 Vibration Suppression

	Label	Adaptive filtering m	node settings	Mode	F			
PA2.00	Range	0~4		Default	0 Unit -		-	
	Activation	Immediate				Index	2200h	
	Set value		Descr	iption	nd 4 th notch filter remain			
	0	Adaptive filter: invalid	Parameters rela unchanged	ted to 3 rd ar				
	1	Adaptive filter: 1 filter valid for once.		ated accord	ralid. 3 rd notch filter related			
	2	Adaptive filter: 1 filter remains valid	1 adaptive filter parameters will					
	3-4	Reserved	-					

	Label	1 st notch frequency	Mode		F			
PA2.01	Range	50~4000	Default	4000	Unit	Hz		
	Activation	Immediate			Index	2201h		
Set center frequency of 1 st torque command notch filter. Set PA2.01 to 4000 to deactivate notch filter								

	Label	1 st notch bandwidth	Mode		F	
PA2.02	Range	0~20	Default	4	Unit	-
	Activation	Immediate			Index	2202h

Set notch bandwidth for 1st resonant notch filter.

Under normal circumstances, please use factory default settings. If resonance is under control, in combination with PA2.01 and PA2.03, PA2.02 can be reduced to improve current loop responsiveness which allows higher mechanical stiffness settings.

	Label	1 st notch depth	Mode		F	
PA2.03	Range	0~99	Default	0	Unit	-
	Activation	Immediate			Index	2203h

Set notch depth for 1st resonant notch filter.

Under normal circumstances, please use factory default settings. If resonance is under control, in combination with PA2.01 and PA2.02, PA2.03 can be reduced to improve current loop responsiveness which allows higher mechanical stiffness settings

	Label	2 nd notch frequency	Mode		F	
PA2.04	Range	50~4000	Default	4000	Unit	Hz
	Activation	Immediate			Index	2204h

Set center frequency of 2nd torque command notch filter.

Set PA2.04 to 4000 to deactivate notch filter

	Label	2 nd notch bandwidth	Mode		F	
PA2.05	Range	0~20	Default	4	Unit	-
	Activation	Immediate			Index	2205h

Set notch bandwidth for 2nd resonant notch filter.

Under normal circumstances, please use factory default settings. If resonance is under control, in combination with PA2.04 and PA2.06, PA2.05 can be reduced to improve current loop responsiveness which allows higher mechanical stiffness settings.

	Label	2 nd notch depth	Mode		F	
PA2.06	Range	0~99	Default	0	Unit	-
	Activation	Immediate			Index	2206h

Set notch depth for 1st resonant notch filter.

When PA2.06 value is higher, notch depth becomes shallow, phase lag reduces. Under normal circumstances, please use factory default settings. If resonance is under control, in combination with PA2.04 and PA2.05, PA2.06 can be reduced to improve current loop responsiveness which allows higher mechanical stiffness settings.

	Label	3 rd notch frequency	Mode		F	
PA2.07	Range	50~4000	Default	4000	Unit	Hz
	Activation	Immediate			Index	2207h

Set center frequency of 3rd torque command notch filter.

Set PA2.07 to 4000 to deactivate notch filter

	Label	3 rd notch bandwidth	Mode		F	
PA2.08	Range	0~20	Default	4	Unit	-
	Activation	Immediate			Index	2208h

Set notch bandwidth for 3rd resonant notch filter.

Under normal circumstances, please use factory default settings.

	Label	3 rd notch depth	Mode		F	
PA2.09	Range	0~99	Default	0	Unit	-
	Activation	Immediate			Index	2209h

Set notch depth for 3rd resonant notch filter.

When PA2.09 value is higher, notch depth becomes shallow, phase lag reduces.

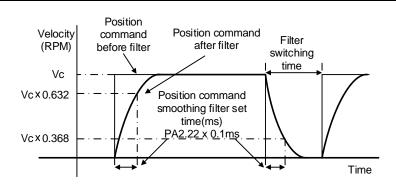
	Label	1 st damping frequency	Mode	F		
PA2.14	Range	0~2000	Default	0	Unit	0.1Hz
	Activation	Immediate			Index	2214h

0: Deactivate

To suppress wobble at load end. Often used when wobble of flexible structure due to high deceleration upon stopping. Especially effective for wobble with frequencies under 100Hz. Set PA2.15 to wobble frequency (wobble frequency can be determined using tracing function of Motion Studio)

	Label	2 nd damping frequency Mode			F	
PA2.16	Range	0~2000	Default	0	Unit	0.1Hz
	Activation	Immediate			Index	2216h

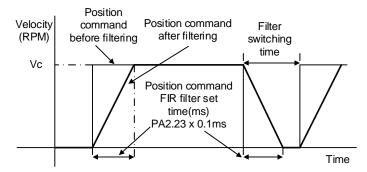
0: Deactivate

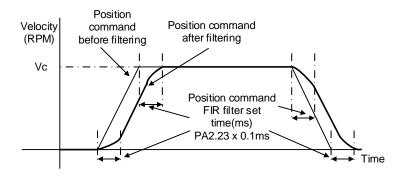

To suppress wobble at load end. Often used when wobble of flexible structure due to high deceleration upon stopping. Especially effective for wobble with frequencies under 100Hz. Set PA2.16 to wobble frequency (wobble frequency can be determined using tracing function of Motion Studio)

PA2.22	Label	Position command smoothing filter	Mode	PP	НМ	CSP
	Range	0~32767	Default	300	Unit	0.1ms
	Activation	After stopping			Index	2222h

To set time constant of 1 time delay filter of position command.

To set time constant of 1 time delay filter, according to target velocity Vc square wave command as show below.




Usually applied when there is rather sharp acceleration which might cause motor overshoot or undershoot. To smoothen command signal, reduces impact to machines and eliminate vibration. If PA2.22 is set too high, overall time will be lengthened.

	Label	Position command FIR filter	Mode	PP	НМ	CSP
PA2.23	Range	0~10000	Default	0	Unit	0.1ms
	Activation	After disabling			Index	2223h

As shown below, when target velocity Vc square wave command reaches Vc, it becomes trapezoidal wave after filtering.

As shown below, when target velocity Vc trapezoidal command reaches Vc, it becomes S wave after filtering.

Usually applied when there is rather sharp acceleration which might cause motor overshoot or undershoot. To smoothen command signal, reduces impact to machines and eliminate vibration. If PA2.23 is set too high, overall time will be lengthened.

^{**}Please wait for command to stop and after filter idle time to modify PA2.23.

Filter switching time = (PA2.23 set value x 0.1ms + 0.25ms)

	Label	5 th resonant frequency	Mode	F		
PA2.31	Range	50~4000	Default	4000	Unit	Hz
	Activation	Immediate			Index	2231h

To set zero-valued eigenfrequency of 5th resonant notch filter. PA2.31 corresponds to machine specific resonant frequency.

Notch filter deactivated if PA2.31 is set to any value.

	Label	5 th resonant Q value	Mode		F	
PA2.32	Range	0~10000	Default	0	Unit	Hz
	Activation	Immediate			Index	2232h
	To not not oh	O value of 5 th reconant potch filter				

	Label	5 th anti-resonant frequency	Mode		F	
PA2.33	Range	50~4000	Default	4000	Unit	Hz
	Activation	Immediate			Index	2233h

To set zero-valued eigenfrequency of $5^{\rm th}$ resonant notch filter. PA2.31 corresponds to machine-specific anti-resonant frequency.

	Label	5 th anti-resonant Q value	Mode		F	
PA2.34	Range	0~9900	Default	0	Unit	Hz
	Activation	Immediate			Index	2234h
	To set reson	ant Q value of 5 th resonant notch filter				

Label oth records to a war and Mode E

	Label	6 th resonant frequency	Mode		F	
PA2.35	Range	50~4000	Default	4000	Unit	Hz
	Activation	Immediate			Index	2235h

To set zero-valued eigenfrequency of 6^{th} resonant notch filter. PA2.35 corresponds to machine-specific resonant frequency.

Notch filter deactivated if PA2.35 is set to any value.

	Label	6 th resonant Q value	Mode		F		
PA2.36	Range	0~10000	Default	0	Unit	Hz	
	Activation	Immediate			Index	2236h	
	To set notch Q value of 6 th resonant notch filter						
	Label	6 th anti-resonant frequency	Mode	F			
PA2.37	Range	50~4000	Default	4000			
	italige	50~4000	Default	4000	Unit	Hz	
	Activation	Immediate	Default	4000	Index	2237h	
	Activation				Index	2237h	

PA2.38 Label 6 th anti-resonant Q value Mode F

Range	0~9900	Default	0	Unit	Hz
Activation	Immediate			Index	2238h

To set resonant Q value of 6th resonant notch filter

	Label	Adjustment mode	Mode		F		
PA2.48	Range	0~1	Default	0	Unit	-	
	Activation	Immediate			Index	2248h	
To turn on/off automatic adjustments							
	Set value	De	scription				
	[0]	Turn off automatic adjustments					
		Activate automatic adjustments, re	al time iner	tia measur	ing and vil	oration	
	1	suppression. Inertia measuring de	activated af	· ·			
		minutes, triggering conditions: cha	nges in med				

	Label	MFC type	Mode	PP		CSP
PA2.50	Range	0~3	Default	0	Unit	Hz
	Activation	After restart			Index	2250h
	Set value	Des	cription			
	[0]	Model following control				
	1	Zero tracking control				
	2	3 inertia (future upgrade)				
	3	Path following (future upgrade)				

	Label	Velocity feedforward compensation coefficient	Mode	PP		CSP
PA2.51	Range	-10000~ 10000	Default	0	Unit	-
	Activation	Immediate			Index	2251h
To compensate for velocity feedforward						

PA2.52	Label	Torque feedforward compensation coefficient	Mode	PP	PV	CSF	e csv
	Range	-10000~ 10000	Default	0	Unit		-
	Activation	Immediate			Inde	x	2252h
To compensate for velocity feedforward							

D40.50	Label	Dynamic friction compensation coefficient	Mode		F	
PA2.53	Range	0~1000	Default	0	Unit	%
	Activation	Immediate			Index	2253h

To set ratio of rated torque/rated rotational speed, to compensate for dynamic friction during motion and have better control over acceleration/deceleration.

Dynamic friction coefficient

= \frac{\text{Torque(Rotational speed 1)} - \text{Torque(Rotational speed 2)}}{\text{Rotational speed 1} - \text{Rotational speed 2}} * \text{rated rotational speed}

When there is an excess position deviation during acceleration/deceleration, please adjust PA2.53 to reduce the deviation to 0.

	Label	Overtravel time coefficient	Mode		F	
PA2.54	Range	0~10000	Default	0	Unit	-
	Activation	Immediate			Index	2254h

To set overtravel time coefficient

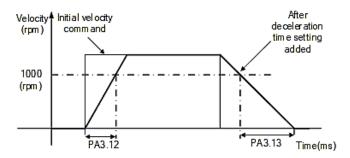
	Label	Overtravel suppression gain	Mode		F	
PA2.55	Range	0~1000	Default	0	Unit	-
	Activation	Immediate			Index	2255h

Suppression improves with larger set value but might affect the performance of MFC. Please use with caution for any value above 100.

3.2.4 【Class 3】 Velocity Control

	Label	Acceleration time Mode		Mode	PV		CSV	
PA3.12	Range	0~10000 Default 0		Unit	ms/(1000RPM)			
	Activation	Immediate			Index	2312h		
	Label	Deceleration time Mode			PV	CSV		
PA3.13	Range	0~10000 Default		0	Unit	ms/(ms/(1000RPM)	
	Activation	Immediate			Index	2313	000RPM)	

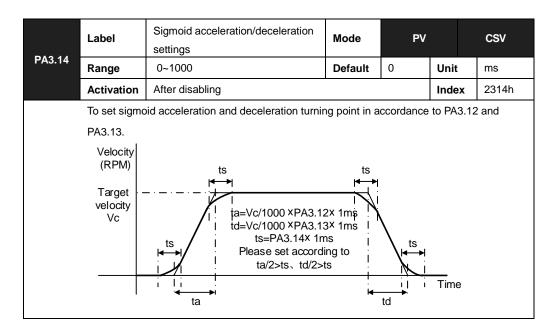
Set max acceleration/deceleration for velocity command.


If target velocity = x [rpm], max acceleration = a [unit: rpm/ms], acceleration time = t [ms]

PA3.12 = 1000/a

PA3.13 = 1000/a

a = x/t


For example: If motor is to achieve 1500rpm in 30s, a=1500/30=50rpm/ms PA3.12 = 1000/a=20. Hence when PA3.12 = 20, motor can achieve 1500rpm in 30s.

Usually used when there is rapid acceleration or trapezoidal wave velocity command due to many different internal speed segments under velocity control mode which causes instable while motor in motion.

Under velocity control mode, 6083 and 6084 is limited by PA3.12 and PA3.13 correspondingly.

PA3.15	Label	Zero speed clamp function selection	Mode	F			
PA3.15	Range	0~3	Default	0	Unit	-	
	Activation	Immediate		Index 2315h			
	Set value	Zero speed o	clamp func	ction			
	0	Invalid: zero speed clamp deactivated					
	1	Velocity command is forced to 0 when input signal is valid.	the zero sp				
	2	Velocity command is forced to 0 when	actual velo				
	3	Includes conditions from 1 and 2					

	Label	Zero speed clamp level	Mode	PV		CSV
PA3.16	Range	10~2000	Default	30	Unit	rpm
	Activation	Immediate			Index	2316h

Velocity command is forced to 0 when actual velocity is lower than PA3.16 and after static time set in PA3.23

	Label	Zero speed clamp static time	Mode	PV		CSV
PA3.23	Range	0~32767	Default	0	Unit	ms
	Activation	Immediate			Index	2323h

To set delay time for zero speed clamp.

To prevent creeping at low speed, velocity command forced to 0 when velocity goes under PA3.16 after time set in PA3.23

3.2.5 【Class 4】 I/O Interface Setting

	Label	Input selection DI1	Mode		F	
PA4.00	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2400h
	Label	Input selection DI2	Mode		F	
PA4.01	Range	0x0~0xFF	Default	0x0	Unit	ı
	Activation	Immediate			Index	2401h
	Label	Input selection DI3	Mode		F	
PA4.02	Range	0x0~0xFF	Default	0x0	Unit	ı
	Activation	Immediate			Index	2402h
	Label	Input selection DI4	Mode		F	
PA4.03	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2403h
	Label	Input selection DI5	Mode		F	
PA4.04	Range	0x0~0xFF	Default	0x0	Unit	ı
	Activation	Immediate			Index	2404h
	Label	Input selection DI6	Mode		F	
PA4.05	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2405h

Digital input DI allocation using hexadecimal system

		Set	value .	
Input	Symbol	Normally	Normally	0x60FD(bit)
		open	close	
Invalid	_	0h	1	×
Positive limit switch	POT	1h	81h	Bit1
Negative limit switch	NOT	2h	82h	Bit0
Clear alarm	A-CLR	4h	-	×
Forced alarm	E-STOP	14h	94h	×
Home switch	HOME-SWITCH	16h	96h	Bit2

- · Please don't set anything other than listed in table above.
- · Normally open: Valid when input = ON Normally close: Valid when input = OFF
- · Er210 might occur if same function is allocated to different channels at the same time
- · Channel that has no value doesn't affect driver motion.
- · Front panel is of hexadecimal system.

PA4.00 - PA4.05 corresponds to DI1 - DI6. External sensors can be connected if the parameters are all set to 0. Controller will read 60FD bit4 - 11 to get DI1 - DI6 actual status.

	Label	Output selection DO1	Mode		F	
PA4.10	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate	ediate			2410h
	Label	Output selection DO2	Mode		F	
PA4.11						
PA4.11	Range	0x0~0xFF	Default	0x0	Unit	-

	Label	Output selection DO3	Mode		F	
PA4.12	Range	0x0~0xFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2412h

Digital output DO allocation using hexadecimal system.

		Set v	alue
Output	Symbol	Normally open	Normally close
Master device control	_	00h	-
Alarm	ALM	01h	81h
Servo-Ready	S-RDY	02h	82h
External brake released	BRK-OFF	03h	83h
Positioning completed	INP	04h	84h
At-speed	AT-SPEED	05h	85h
Torque limit signal	TLC	06h	86h
Zero speed clamp detection	ZSP	07h	87h
Velocity coincidence	V-COIN	08h	88h
Position command ON/OFF	P-CMD	0Bh	8Bh
Velocity limit signal	V-LIMIT	0Dh	8Dh
Velocity command ON/OFF	V-CMD	0Fh	8Fh
Servo status	SRV-ST	12h	92h
Homing done	HOME-OK	22h	A2h
Position comparison	CMP-OUT	14h	94h

Please don't set any other than the outputs listed in the table above.

- Normally open: Active low
- Normally close: Active high
- · Front panel is of hexadecimal system.

PA4.10 - PA4.12 corresponds to DO1 – DO3. If all parameters are set to 0, master device controls the outputs, object dictionary 0x60FE sub-index 01 bit16-18 corresponds to DO1-DO3.

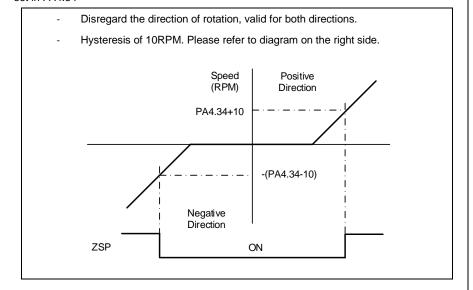
	Label	Positioning complete range	Mode	PP	НМ	CSP
PA4.31	Range	0~10000	Default	20	Unit	Command
	Activation	Immediate			Index	2431h

To set position deviation range of INP1 positioning completed output signal.

	Label	Positioning complete output settings	Mode	PP	НМ	CSP
PA4.32	Range	0~4	Default	1	Unit	-
	Activation	Immediate			Index	2432h

Output conditions of INP1 positioning completed output signal

Set value	Positioning completed signal
0	Signal valid when the position deviation is smaller than PA4.31
1	Signal valid when there is no position command and position deviation is smaller than PA4.31
2	Signal valid when there is no position command, zero-speed clamp detection (ZSP) signal is ON and the positional deviation is smaller than PA4.31
3	Signal valid when there is no position command and position deviation is smaller than PA4.31. Signal ON when within the time set in PA4.33 otherwise OFF.
4	When there is no command, position detection starts after the delay time set in PA4.33. Signal valid when there is no position command and positional deviation is smaller than PA4.31.

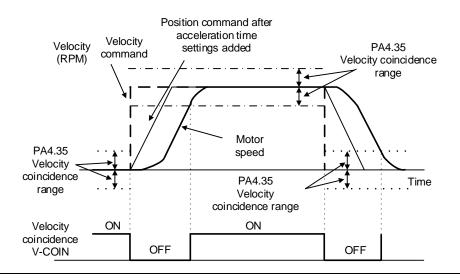


	Label	INP positioning delay time	Mode	PP	НМ	CSP
PA4.33	Range	0~15000	Default	0	Unit	1ms
	Activation	Immediate	Index	2433h		
	To set delay	time when PA 4.32 = 3				
	Set value	Positioning completed signal				
	0 Indefinite delay time, signal ON until next position command					
	1-15000 OFF within the time set; ON after time set. Switch OFF after receiving position command.					

	Label	Zero speed	Mode		F	
PA4.34	Range	1~2000	Default	50	Unit	RPM
	Activation	Immediate			Index	2434h

To set threshold value for zero speed clamp detection.

Zero speed clamp detection (ZSP) output signal valid when motor speed goes under the value set in PA4.34



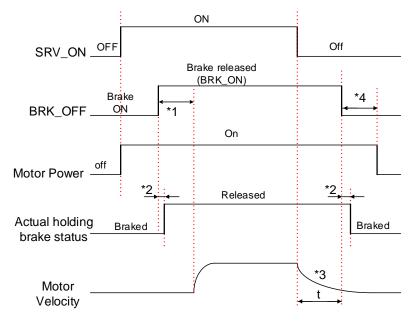
	Label	Velocity coincidence range	Mode	PV		CSV
PA4.35	Range	10~2000	Default	50	Unit	RPM
	Activation	Immediate			Index	2435h

If the difference between velocity command and motor actual speed is below PA4.35, Velocity coincidence (V-COIN) output signal valid.

Due to 10RPM hysteresis:

Velocity coincidence output OFF -> ON timing (PA4.35 -10) r/min Velocity coincidence output ON -> OFF timing (PA4.35 +10) r/min

	Label	Reached speed (AT-speed)	Mode	PV		CSV
PA4.36	Range	10~2000	Default	1000	Unit	RPM
	Activation	Immediate			Index	2436h
		velocity > PA4.36, AT-speed output si sing 10RPM hysteresis	gnal is valid			
	Speed (RPM) PA4.36+' PA4.36-1	10	or speed			
	-(PA4.36-10				/	Time
	Reached spe		_F -	ON		j


	Label	Motor power-off delay time	Mode		F	
PA4.37	Range	0~3000	Default	100	Unit	1ms
	Activation	Immediate			Index	2437h

To set delay time for holding brake to be activated after motor power off to prevent axis from sliding.

D. 4.00	Label	Delay time for holding brake release	Mode		F	
PA4.38	Range	0~3000	Default	0	Unit	1ms
	Activation	Immediate			Index	2438h

To set delay time for holding brake to be released after motor power on. Motor will remain at current position and input command is masked to allow holding brake to be fully released before motor is set in motion.

- *1: Delay time set in PA4.38
- *2: Delay time from the moment BRK_OFF signal is given until actual holding brake is released or BRK_ON signal is given until actual holding brake is activated. It is dependent on the holding brake of the motor.
- *3: Deceleration time is determined by PA6.14 or if motor speed goes below PA4.39, whichever comes first. BRK_OFF given after deceleration time.
- *4: PA4.37 set time value.

Delay time from the moment SRV_ON is given until BRK_OFF switch to BRK_ON, is less than 500ms.

	Label	Holding brake activation speed	Mode		F	
PA4.39	Range	30~3000	Default	30	Unit	RPM
	Activation	Immediate			Index	2439h

To set the activation speed for which holding brake will be activated.

When SRV-OFF signal is given, motor decelerates, after it reaches below PA4.39 and PA6.14 is not yet reached, BRK_OFF is given.

BRK_OFF signal is determined by PA6.14 or if motor speed goes below PA4.39, whichever comes first.

Application:

- 1. After disabling axis, PA6.14 has been reached but motor speed is still above PA4.39, BRK_OFF signal given.
- 2. After disabling axis, PA6.14 has not been reached but motor speed is below PA4.39, BRK_OFF signal given.

	Label	Emergency stop function	Mode		F	
PA4.43	Range	0~1	Default	0	Unit	-
	Activation	Immediate			Index	2443h

- 0: Emergency stop is valid, servo driver will be forced to STOP and alarm occurs.
- 1: Emergency stop is invalid, servo driver will not be forced to STOP.

	Label	Torque compensation time upon enabling	Mode		F	
PA4.48	Range	0~3000	Default	0	Unit	ms
	Activation	Immediate			Index	2448h

Torque compensation at the enabling of the servo drive can be turned on through PA6.10. Torque compensation time is set using PA4.48. Torque will increase as the motor is enabled and reduce until diminished in the time duration set in PA4.48. When PA4.48 is set at default of 0s, continuous torque compensation duration will be 1000ms

3.2.6 【Class 5】 Extension settings

1

	Label	Driver prohibition input settings	Mode		F	
PA5.04	Range	0~2	Default	0	Unit	-
	Activation	Immediate			Index	2504h
	To set driver	prohibition input (POT/NOT): If set to	1, no effect	on homing	mode.	
	Set value	Desc	ription			
	0	POT → Positive direction drive prof	nibited			
		NOT → Negative direction drive pro	ohibited			

2 Any single sided input from POT or NOT might cause Er260
In homing mode, POT/NOT invalid, please set object dictionary 5012-04 bit0=1

	Label	Servo-off mode	Mode		F	
PA5.06	Range	0~5	Default	0	Unit	-
	Activation	After restart			Index	2506h

To set servo driver disable mode and status.

POT and NOT invalid

Value	Description			
value	Mode	Status		
0	Servo braking	Dynamic braking		
1	Free stopping	Dynamic braking		
2	Dynamic braking	Dynamic braking		
3	Servo braking	Free-run		
4	Free stopping	Free-run		
5	Dynamic braking	Free-run		

	Label	Main power-off detection time	Mode		F	
PA5.09	Range	50~2000	Default	50	Unit	ms
	Activation	Immediate			Index	2509h

To set duration time for detection of main power-off or low voltage supply.

	Label	Servo-off due to alarm mode	Mode		F	
PA5.10	Range	0~5	Default	0	Unit	-
	Activation	After restart			Index	2510h

To set servo driver disable mode and status if alarm is triggered.

Alarm type 2:

Value	Description			
value	Mode	Status		
0	Servo braking	Dynamic braking		
1	Free stopping	Dynamic braking		
2	Dynamic braking	Dynamic braking		
3	Servo braking	Free-run		
4	Free stopping	Free-run		
5	Dynamic braking	Free-run		

Alarm type 1:

Value	Description			
value	Mode	Status		
0				
1	Dynamic braking	Dynamic braking		
2				
3	Servo braking	Free-run		
4	Free stopping	Free-run		
5	Dynamic braking	Free-run		

	Label	Servo braking torque setting	Mode		F	
PA5.11	Range	0~500	Default	0	Unit	%
	Activation	Immediate			Index	2511h

To set torque limit for servo braking mode.

If PA5.11 = 0, use torque limit as under normal situation.

Between max. torque 6072 and PA5.11, actual torque limit will take smaller value.

	Label	Overload level setting	Mode		F	
PA5.12	Range	0~115	Default	0	Unit	%
	Activation	Immediate			Index	2512h

If PA5.12 = 0, overload level = 115%

Use only when overload level degradation is needed.

PA5.13	Label	Overspeed level setting	Mode	F		
	Range	0~10000	Default	0	Unit	RPM

Activation	Immediate	Index	2513h
'	ed exceeds PA5.13, Er1A0 might occur. 3 = 0, overspeed level = max. motor speed x 1.2		

	Label	I/O digital filter	Mode		F		
PA5.15	Range	0~255	Default	10	Unit	0.1ms	
	Activation	Immediate			Index	2515h	
Digital filtering of I/O input. Overly large value set will cause control delay.							

	Label	Position unit setting	Mode	PP	НМ	CSP
PA5.20	Range	0~2	Default	2	Unit	-
	Activation	After restart			Index	2520h

Set value	Unit
0	Encoder unit
1	Command unit
2	0.0001rev

Command unit: Pulse from host (Affected by electronic gear ratio)

Encoder unit: Pulse from encoder (Related to encoder resolution)

PA5.20 can only be modified when axis is disabled as it will clear position data.

	Label	Torque limit selection	Mode		F	
PA5.21	Range	0~2	Default	0	Unit	-
	Activation	Immediate			Index	2521h

Set value	Positive limit value	Negative limit value	
0	PA0.13	PA0.13	
1	PA0.13	PA5.22	
2	60E0	60E1	

Between max. torque 6072 and PA5.21, actual torque limit will take smaller value.

	Label	2 nd Torque limit	Mode		F	
PA5.22	Range	0~500	Default	300	Unit	%
	Activation	Immediate			Index	2522h
	Limited by motor max. torque.					
	Between ma	x. torque 6072 and PA5.22, actual tord	que limit will	take smal	ler value.	

	Label	LED initial status	Mode		F	
PA5.28	Range	0~42	Default	34	Unit	-
	Activation	After restart			Index	2528h

To $\underline{\text{set}}$ content display on front panel of the servo driver at servo driver power on.

Set value	Content	Set value	Content	Set value	Content
0	Position command deviation	15	Overload rate	30	No. of encoder communication error

1	Motor speed	16	Inertia ratio	31	Accumulated operation time
2	Position command velocity	17	No rotation cause	32	Automatic motor identification
3	Velocity control command	18	No. of changes in I/O signals	33	Driver temperature
4	Actual feedback torque	19	Number of over current signals	34	Servo status
5	Sum of feedback pulse	20	Absolute encoder data	35	/
6	Sum of command pulse	21	Single turn position	36	Synchronous period
7	Maximum torque during motion	22	Multiturn position	37	No. of synchronous loss
8	/	23	Communication axis address	38	Synchronous type
9	Control mode	24	Encoder position deviation	39	Whether DC is running or not
10	I/O signal status	25	Motor electrical angle	40	Acceleration/ Deceleration status
11	/	26	Motor mechanical angle	41	Sub-index of OD index
12	Error cause and history record	27	Voltage across PN	42 Value of sub-index of index	
13	Alarm code	28	Software version		
14	Regenerative load rate	29	/		

	Label	Torque limit duration during homing	Mode	F		
PA5.37	Range	0~5000	Default	500 Unit ms		ms
	Activation	Immediate			Index	2537h

To set time threshold for output torque to reach limit under torque initialization mode.

Only applicable for torque initialization method -6 to -1

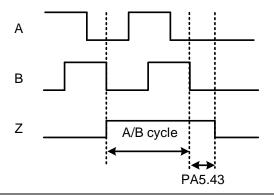
Under torque initialization mode, motor torque reached PA5.39 and the duration reaches PA5.37 before moving into next step.

	Label	3 rd torque limit	Mode		F	
PA5.39	Range	0~500	Default	80	Unit	%
	Activation	Immediate			Index	2539h

To set torque limit during torque initialization

Between max. torque 6072 and PA5.37, actual torque limit will take smaller value.

	Label	D41 set value	Mode	F		
PA5.40	Range	0x0~0xFFFFF	Default	0X30C Unit %		%
	Activation	Immediate			Index	2540h
	Set object word monitored by D41, index (left 4 bits) + sub-index (right 1 bit), if monitoring					nitoring
	0x6092-01, s	set PA5.40 to 0x60921.				


Label		Frequency divider output - ABZ signal polarity	Mode F			
PA5.42	Range	0~7	Default	0	Unit	-
	Activation	After restart			Index	2542h

Bit	Polarity	Description
Bit0	0 = Positive	Z polarity setting of frequency divider output and position
1 = Negative		comparison
0 = Positive Only valid in position comparison.		
Bit1	1 = Negative	Polarity setting when phase A frequency divider as
		position comparison output
	0 = Positive	Only valid in position comparison.
Bit2		Polarity setting when phase B frequency divider as
		position comparison output

PA5.43	Label	Frequency divider output – Z-signal width	Mode	F		
	Range	0~500	Default	0	Unit	μs
	Activation	After restart		•	Index	2543h

Set value	Description			
[0]	Z bandwidth equivalent to 1 cycle of A/B			
1~500	Delay setting on top of A/B cycle width			

When PA5.43 = 0, width of frequency divider output Z-signal is equivalent to width of 1 cycle of A/B, value set in PA5.43 + A/B cycle width = delay setting.

	Label	Frequency divider output source	Mode		F	
PA5.44	Range	0~4	Default	0	Unit	-
	Activation	After restart			Index	2544h
	Set Value	e Desc	Description			
	[0]	Position feedback of encoder #1(motor encoder)				

Position feedback of encoder #1(motor encoder)
Position feedback of encoder #2(external encoder)
Reserved
Pulse input command position synchronous output; position
comparison not available in this mode
Frequency divider output prohibited

	Label	Vent overload level	Mode		F	
PA5.46	Range	0~115	Default	0	Unit	%
	Activation	Immediate			Index	2546h

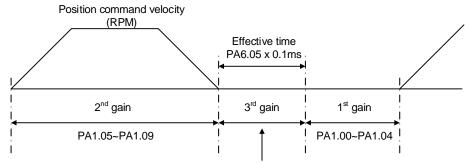
Set value	Description
[0]	Default level: 80%
1~115	Set vent overload level accordingly

3.2.7 【Class 6】 Other settings

PA6.01	Label	Encoder zero position compensation	Mode		F		
	Range	0~360	Default	0	Unit	0	
	Activation	After restart			Index	2601h	
Angle of the encoder after zero position calibration							

	Label	JOG trial run torque command	Mode		F		
PA6.03	Range	0~350	Default	350	Unit	%	
	Activation	Immediate			Index	2603h	
To set torque for JOG trial run command.							

	Label	JOG trial run velocity command	Mode		F		
PA6.04	Range	0~10000	Default	30	Unit	r/min	
	Activation	Immediate			Index	2604h	
To set velocity for JOG trial run command.							


	Label	Position 3 rd gain valid time	Mode	PP	НМ	CSP
PA6.05	Range	0~10000	Default	0	Unit	0.1ms
	Activation	Immediate			Index	2605h

To set time for 3rd gain to be valid

When not in use, set PA6.05=0, PA6.06=100

	Label	Position 3 rd gain scale factor	Mode	PP	НМ	CSP
PA6.06	Range	0~1000	Default	100	Unit	100%
	Activation	Immediate			Index	2606h

Set up the 3rd gain by multiplying factor of the 1st gain

Position loop gain = PA1.00 x PA6.06/100 Velocity loop gain = PA1.01 x PA6.06/100 Velocity loop integral time constant, Velocity detection filter, Torque filter time constant still uses 1st gain

Above diagram is illustrated using PA1.15 = 7.

3rd gain= 1st gain * PA6.06/100

Only effective under position control mode. 3^{rd} gain valid when PA6.05 \neq 0. Set 3^{rd} gain value in PA6.06. When 2^{rd} gain switches to 1^{st} gain, it will go through 3^{rd} , switching time is set in PA1.19.

	Label	Torque command additional value	Mode		F	
PA6.07	Range	-100~100	Default	0	Unit	%
	Activation	Immediate			Index	2607h

To set torque forward feed additional value of vertical axis.

Applicable for loaded vertical axis, compensate constant torque.

Application: When load move along vertical axis, pick any point from the whole motion and stop the load at that particular point with motor enabled but not rotating. Record output torque value from d04, use that value as torque command additional value (compensation value)

	Label	Positive direction torque compensation value	Mode		F	
PA6.08	Range	-100~100	Default	0	Unit	%
	Activation	Immediate			Index	2608h
	Label	Negative direction torque compensation value	Mode		F	
PA6.09	Range	-100~100	Default 0		Unit	%
	Activation	Immediate			Index	2609h

To reduce the effect of mechanical friction in the movement(s) of the axis. Compensation values can be set according to needs for both rotational directions.

Applications:

1. When motor is at constant speed, d04 will deliver torque values.

Torque value in positive direction = T1;

Torque value in negative direction = T2

PA6.08/PA6.09 =
$$T_f = \frac{|T1 - T2|}{2}$$

PA6.10	Label	Torque compensation upon enabling	Mode	F		
	Range	0x0 ~ 0xFFFF	Default	0x0	Unit	-
	Activation	Immediate			Index	2610h

In applications with vertical load axis, servo drive will automatically increase the motor torque to compensate for the gravitational force at enabling of the drive. In order to prevent the axis from having a slight drop and back to initial position behavior, PA6.10 can be set to turn on torque compensation.

Set 0x0010 : ON Set 0x0 : OFF

	Label	Current response setting	Mode		F	
PA6.11	Range	50~100	Default	100	Unit	%
	Activation	Immediate			Index	2611h

To set driver current loop related effective value ratio

	Label	Max. time to stop after disabling	Mode		F	
PA6.14	Range	0~3000	Default	500	Unit	ms
	Activation	Immediate			Index	2614h

To set the max. time allowed for the axis to stop on emergency stop or normal axis disabling. After disabling axis, if motor speed is still higher than PA4.39 but the time set in PA6.14 is reached, BRK_ON given and holding brake activated.

BRK_ON given time is determined by PA6.14 or when motor speed goes below PA4.39, whichever comes first.

Applications:

- 1. After disabling axis, if motor speed is still higher than PA4.39 but the time set in PA6.14 is reached, BRK_ON given and holding brake activated.
- 2. After disabling axis, if motor speed is already lower than PA4.39 but the time set in PA6.14 is not yet reached, BRK_ON given and holding brake activated.

	Label	Trial run distance	Mode		F	
PA6.20	Range	0~1200	Default	10	Unit	0.1rev
	Activation	Immediate			Index	2620h

JOG (Position control): Distance travel of each motion

	Label	Trial run waiting time	Mode		F		
PA6.21	Range	0~30000	Default	300	Unit	ms	
	Activation	Immediate			Index	2621h	
JOG (Position control) : Waiting time after each motion							
				F			
	Label	No. of trial run cycles	Mode		F		
PA6.22	Label Range	No. of trial run cycles 0~32767	Mode Default	5	F Unit	-	
PA6.22		,		5		- 2622h	

	Label	Trial run acceleration	Mode	F		
PA6.25	Range	0~10000	Default	200	Unit	ms/
FA0.23						(1000rpm)
	Activation	Immediate			Index	2625h
To set the acceleration/deceleration time for JOG command between 0 rpm to 1000 rpm						

	Label	Velocity observer gain	Mode		F	
PA6.28	Range	0~32767	Default	0	Unit	-
	Activation	Immediate			Index	2628h
0: Default stable gain; Modifications are not recommended.						

	Label	Velocity observer bandwidth	Mode		F	
PA6.29	Range	0~32767	Default	0	Unit	-
	Activation	Immediate			Index	2629h
0: Default stable bandwidth; Modifications are not recommended.						

	Label	Frame error window time	Mode		F	
PA6.34	Range	0~32767	Default	100	Unit	-
	Activation	Immediate			Index	2634h
To set EtherCAT data frame error detection window time						

	Label	Frame error window	Mode		F	
PA6.35	Range	0~32767	Default	50	Unit	-
	Activation	Immediate			Index	2635h
To set EtherCAT data frame error detection window						

	Label	Absolute value rotation mode denominator setting	Mode	PP	НМ	CSP
PA6.54	Range	0~32766	Default	0	Unit	-
	Activation	After restart			Index	2654h

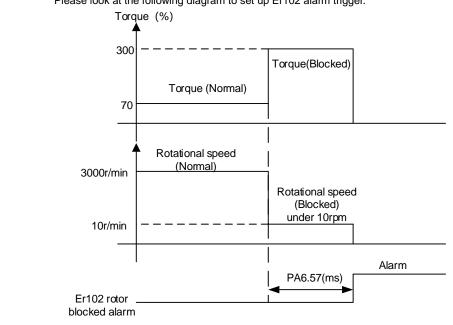
To set denominator of absolute encoder in rotational mode.

When PA0.15 = 2 and use in combination with PA6.54:

 $\text{Feedback load position 6064=} \frac{PA6.63}{PA6.54} \, \text{x Electronic gear ratio}$

PA6.56	Label	Blocked rotor alarm torque threshold	Mode		F	
	Range	0~300	Default	300	Unit	%
	Activation	Immediate			Index	2656h

To set the torque threshold of blocked rotor to trigger alarm. (Alarm triggered if torque output% larger than threshold value & under 10rpm)


If PA6.56 = 0, blocked rotor alarm deactivated.

If motor speed is 10rpm or above, Er102 won't be triggered.

	Label	Blocked rotor alarm delay time	Mode		F	
PA6.57	Range	0~1000	Default	400	Unit	ms
	Activation	Immediate			Index	2657h

To set delay time for blocked rotor alarm to trigger, if rotor blocked duration is not longer than time set in PA6.57, Er102 won't be triggered.

Please look at the following diagram to set up Er102 alarm trigger.

*if rotational speed is more than 10rpm when motor rotor is blocked, Er100 will be triggered.

	Label	Homing mode position threshold	Mode		F	
PA6.59	Range	0~100	Default	8	Unit	0.00001rev
	Activation	Immediate			Index	2659h
To set position threshold for homing mode.						

	Label	Z signal holding time	Mode		F	
PA6.61	Range	0~100	Default	10	Unit	ms
	Activation	Immediate			Index	2661h

To set the holding time for Z signal to maintain active high

Application:

- 1. Z signal for 60FDH;
- 2. Z signal for homing process
- 3. Z-phase frequency output pulse width. Unit = 0.1ms;

Please set PA6.61≥0.2ms if used for 3 applications as above

	Label	Absolute multiturn data upper limit	Mode		F	
PA6.63	Range	0~32766	Default	0	Unit	rev
	Activation	Immediate			Index	2663h

To set upper limit of multiturn data with absolute encoder set as rotational mode.

When PA0.15 = 2 and use in combination with PA6.54:

Feedback load position 6064= $\frac{PA6.63}{PA6.54}$ x Electronic gear ratio

3.2.8 【Class 7】 Factory settings

Please take precaution when modifying Class 7 parameters. Might cause driver errors

	Label	Motor model		Mode		F	
PA7.15	Range	0x0~0x7FFF		Default	0x200	Unit	-
	Activation	After restart	Da	ta length	16 bit	Property	R/W

Set value	Description
0x100	Read from EEPROM
[0x200]	Read from Encoder

When PA7.15 = 0x200(2xx):

Parameter	Label				
PA7.00	Current loop gain				
PA7.01	Current loop integral time				
PA7.05	No. of motor pole pairs				
PA7.06	Motor phase resistance				
PA7.07	Motor D/Q induction				
PA7.08	Motor back EMF coefficient				
PA7.09	Motor torque coefficient				
PA7.10	Motor rated rotational speed				
PA7.11	Motor max. rotational speed				
PA7.12	Motor rated current				
PA7.13	Motor rotor inertia				

PA7.14	Driver power rating
PA7.16	Encoder
PA7.17	Motor max. current
PA7.18	Encoder index angle compensation

	Label	Encoder		Mode		F	
PA7.16	Range	0x0~0x200		Default	Encoder	Unit	-
	Activation	After restart		Data length	16 bit	Property	R/W
	Set valu	alue Descr		n			
	0x0		17-bit encod	17-bit encoder			

23-bit encoder

24	D	0.4	Defeat	1124	
	Label	Vent release mode	Mode	F	
		•			

PA7.31	Range	0~1	0~1			-	Unit	-		
	Activation	After res	tart				Index	2731h		
To set vent release mode										
	Power Rating(W) Default			Description						
	40	400 1			Regenerative electricity absorbed by internal capacitor					
	750 or a	above	0	Regenerative electricity absorbed by regenerative resistor						

3.3 402 Parameters Function

0x7

Panel Display as follows:

- Parameter Valid mode Description
 - CSP: Valid in cyclic synchronous position mode
 - CSV: Valid in cyclic synchronous velocity mode
 - CST: Valid in cyclic synchronous torque mode
 - HM: Valid in homing mode
 - PP: Valid in profile position mode
 - PV: Valid in profile velocity mode
 - PT: Valid in profile torque mode
 - F: Valid in all modes

Index	Label	Error code)		Mode	F			
603Fh	Range	0x0~0xFFFF			Default	0X0	Unit	-	
603FII	Structure	VAR	Туре	Uint16	Mapping	TPDO	Access	RO	

Please refer to Chapter 9 for more details on error codes.

Index	Label	Control wo	ord		Mode	F		
6040h	Range	0x0~0xFF	FF		Default	0X0	Unit	-
6040H	Structure	VAR	Туре	Uint16	Mapping	RPDO	Access	RW

Bit	Label	Description				
0	Start	1 - valid, 0 - invalid				
1	Main circuit power on	1 - valid, 0 - invalid				
2	Quick stop	0 - valid,1 - invalid				
3	Servo running	1 - valid, 0 - invalid				
4-6	Running mode related	Related to each servo running mode				
7	Fault reset	Reset resettable fault alarm. Rising edge of Bit7 is valid, bit7 remains at 1, and all other instructions are invalid				
8	Pause	For more information on how to pause in each mode, refer to Object Dictionary 605Dh				
9	No definition	Undefined				
10	Reserved	Undefined				
11-15	Reserved	Undefined				

Index	Label	Status wor	·d		Mode	F		
6041h	Range	0x0~0xFFFF			Default	0X0	Unit	-
004111	Structure VAR Ty			Uint16	Mapping	TPDO	Access	RO

Bit	Label	Description
0	Servo ready	1 - valid, 0 - invalid
1	Start	1 - valid, 0 - invalid
2	Servo running	1 - valid, 0 - invalid
3	Fault	1 - valid, 0 - invalid
4	Main circuit power on	1 - valid, 0 - invalid
5	Quick stop	0- valid, 1 - invalid
6	Servo cannot run	1 - valid, 0 - invalid
7	Warning	1 - valid, 0 - invalid
8	Reserved	Reserved
9	Remote control	1 - valid, 0 - invalid
10	Arrived at position	1 - valid, 0 - invalid
11	Internal limit valid	1 - valid, 0 - invalid
12-13	Mode related	Related to each servo operation mode
14	Reserved	Reserved
15	Origin found	1 - valid, 0 - invalid

Index	Label	Quick stop	option o	code	Mode	F		
605Ah	Range	0~7	0~7			2	Unit	-
OUSAII	Structure	VAR	Туре	INT16	Mapping	-	Access	RW

Motor stops when quick stop option code is given.

PP, CSP, CSV, PV

- 0 : To stop motor through PA5.06. Status: Switch on disable, axis disabled.
- 1 : Motor decelerates and stops through 6084. Status: Switch on disable, axis disabled.
- 2 : Motor decelerates and stops through 6085. Status: Switch on disable, axis disabled.
- 3 : Motor decelerates and stops through 60C6. Status: Switch on disable, axis disabled.
- 5 : Motor decelerates and stops through 6084. Status: Quick stop
- 6 : Motor decelerates and stops through 6085. Status: Quick stop
- 7 : Motor decelerates and stops through 60C6. Status: Quick stop

НМ

- 0 : To stop motor through PA5.06. Status: Switch on disable, axis disabled.
- 1 : Motor decelerates and stops through 609A. Status: Switch on disable, axis disabled.
- 2 : Motor decelerates and stops through 6085. Status: Switch on disable, axis disabled.
- 3 : Motor decelerates and stops through 60C6. Status: Switch on disable, axis disabled.
- 5 : Motor decelerates and stops through 609A. Status: Quick stop
- 6 : Motor decelerates and stops through 6085. Status: Quick stop
- 7 : Motor decelerates and stops through 60C6. Status: Quick stop

Index	Label	Shutdown	Option (Code	Mode	F		
605Bh	Range	0~1	0~1			0	Unit	-
003611	Structure	VAR	Туре	Uint16	Mapping	-	Access	RW

PP, CSP, CSV, PV

0 : To stop motor through PA5.06, 5.06 = 0(Emergency stop), 5.06=1(Free stop)

1 : Motor decelerates and stops through 6084

НМ

0 : To stop motor through PA5.06, 5.06 = 0(Emergency stop), 5.06=1(Free stop)

1 : Motor decelerates and stops through 609A

CST

0 : To stop motor through PA5.06, 5.06 = 0(Emergency stop), 5.06=1(Free stop)

1 : Motor decelerates and stops through 6087

Index	Label	Disable Op	eration	Option Code	Mode	F		
605Ch	Range	0~1	0~1			0	Unit	-
003011	Structure	VAR	Туре	INT16	Mapping	-	Access	RW

To set motor stopping mode when servo drive is disabled.

PP, CSP, CSV, PV

0 : To stop motor through PA5.06, 5.06 = 0(Emergency stop), 5.06=1(Free stop)

1 : Motor decelerates and stops through 6084

НМ

0 : To stop motor through PA5.06, 5.06 = 0(Emergency stop), 5.06=1(Free stop)

1 : Motor decelerates and stops through 609A

CST

0 : To stop motor through PA5.06, 5.06 = 0 (Emergency stop), 5.06=1 (Free stop)

1 : Motor decelerates and stops through 6087

Index	Label	Halt Option	n Code		Mode	F		
605Dh	Range	1~3			Default	1	Unit	-
CCODII	Structure	VAR	Туре	INT16	Mapping	-	Access	RW

When control word is set to halt, set deceleration and stop option. Also suitable for deceleration mode settings during mode switching

PP, CSP, CSV, PV

1 : Motor decelerates and stops through 6084. Status: Operation enabled, axis enabled.

2 : Motor decelerates and stops through 6085. Status: Operation enabled, axis enabled.

3 : Motor decelerates and stops through 60C6. Status: Operation enabled, axis enabled.

НМ

1 : Motor decelerates and stops through 609A. Status: Operation enabled, axis enabled.

2 : Motor decelerates and stops through 6085. Status: Operation enabled, axis enabled.

3 : Motor decelerates and stops through 60C6. Status: Operation enabled, axis enabled.

CST

1, 2: Motor decelerates and stops through 6087. Status: Operation enabled, axis enabled.

3 : Motor decelerates and stops through torque = 0. Status: Operation enabled, axis enabled.

Index	Label	Fault Reaction Option Code			Mode	F		
605Eh	Range	0~2	0~2			0	Unit	-
OOSEII	Structure	VAR	Туре	INT16	Mapping	-	Access	RW

Select stopping mode when servo alarm (Err 8xx) occurs.

PP, CSP, CSV, PV

- 0 : Select motor stopping mode according to alarm properties. Status: Fault, axis disabled.
- 1 : Motor decelerates and stops through 6084. Status: Fault, axis disabled.
- 2 : Motor decelerates and stops through 6085. Status: Fault, axis disabled.

НМ

- 0 : Select motor stop by the alarm attribute for emergency stop, the fault state and disable
- 1 : After the 609A motor is decelerated and stopped,, the fault state and disable
- 2 : After the 6085 motor is decelerated and stopped, the fault state and disable

CST

- 0, 1 : Select motor stop by the alarm attribute for emergency stop, the fault state and disable
- 2 : After the 6087 motor is decelerated and stopped, the fault state and disable

When other alarms, i.e. drive-side alarms:

Select motor stop by the alarm attribute for emergency stop, the fault state and disable

l.	ndex	Label	Mode of O	peration	l	Mode	F		
	060h	Range	1~11			Default	8	Unit	-
	00011	Structure	VAR Type INT8 N		Mapping	-	Access	RW	

No.	Mode	Abbr.
1	Profile position mode	PP
3	Profile velocity mode	PV
4	profile Torque mode	PT
6	Homing mode	НМ
8	Cyclic synchronous position mode	CSP
9	Cyclic synchronous velocity mode	CSV
10	Cyclic synchronous torque mode	CST

Index	Label	Mode of O	peration	display	Mode	F		
6061h	Range	1~11			Default	8	Unit	-
000111	Structure	VAR	Туре	INT8	Mapping	-	Access	RW

No.	Mode	Abbr.
1	Profile position mode	PP
3	Profile velocity mode	PV
4	profile Torque mode	PT
6	Homing mode	НМ
8	Cyclic synchronous position mode	CSP
9	Cyclic synchronous velocity mode	CSV
10	Cyclic synchronous torque mode	CST

Index	Label	Position Demand Value			Mode	PP	CSP	НМ	
	6062h	Range	-2147483648~2147483647			Default	0	Unit	Command
	000211	Structure	VAR	Туре	INT32	Mapping	TPDO	Access	RO

Reflects position command when servo driver is enabled.

Index	Label	Position Ad	ctual Inte	ernal Value	Mode	F		
6063h	Range	-2147483648~2147483647			Default	0	Unit	Encoder
000311	Structure	VAR Type INT32			Mapping	TPDO	Access	RO

Reflects motor absolute position (Encoder unit)

Index Label Position Actual Value Mode		F		
Range -2147483648~2147483647 Default	: 0	Unit	Command	
Structure VAR Type INT32 Mappir	ng TPDO	Access	RO	

Reflects user's real time absolute position 6064h*Gear ratio = 6063h

Index	Label	Follow Erro	or Windo	ow	Mode	PP	CSP	НМ
6065h	Range	0~2147483647			Default	30000	Unit	Command
000311	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RO

To set an acceptable deviation for requested position. When actual position exceed position deviation window, error might occur.

Index	Label	Follow Erro	or Time	Out	Mode	PP	CSP	НМ
6066h	Range	0~65535			Default	10	Unit	Command
	Structure	VAR	Туре	UINT16	Mapping	RPDO	Access	RO

To set position deviation detection time

Index	Label	Position window	Mode	PP	CSP	НМ
6067h	Range	0~2147483647	Default	10	Unit	Command

Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RO
To set an ac	ceptable ext	ent of a	rrival position				

Index	Label	Position window time			Mode	PP	CSP	НМ
6068h	Range	0~65535			Default	300	Unit	Command
000011	Structure	VAR	Туре	UINT16	Mapping	RPDO	Access	RO

To set the time between arrival to the output of INP (In position) signal.

Index	Label	Velocity De	emand \	/alue	Mode	CS	/	PV	
606Bh	Range	-2147483	648~214	17483647	Default	0	Unit	Command/s	
OOODII	Structure	VAR	Туре	INT32	Mapping	TPDO	Access	RO	

Show user set velocity demand value.

Index	Label	Velocity Ac	ctual Val	ue	Mode	F		
606Ch	Range	-2147483	648~214	17483647	Default	0	Unit	Command/s
000011	Structure	VAR	Туре	INT16	Mapping	TPDO	Access	RO

Show actual velocity value.

Index 606Dh	Label	Velocity wi	ndow		Mode	CS	'	PV	
	Range	0~65535			Default	10	Unit	Command/s	
OOODII	Structure	VAR	Туре	UINT16	Mapping	RPDO	Access	RO	
Set the range of velocity									

Index	Label	Velocity wi	ndow tir	ne	Mode	CS	/	PV
606Eh	Range	0~65535			Default	0	Unit	ms
OUGEN	Structure	VAR	Туре	UINT16	Mapping	RPDO	Access	RO

To set the time between velocity reached and status word set to TargetReached. $\label{eq:total_problem}$

Index	Label	Velocity Th	nreshold		Mode	CS	/	PV
606Fh	Range	0~65535			Default	10	Unit	Command/s
bubhn	Structure	VAR	Туре	UINT16	Mapping	RPDO	Access	RO

To set to zero-speed range.

Index	Label	Velocity Th	nreshold	Time	Mode CSV			PV
6070h	Range	0~65535			Default	100	Unit	ms
007011	Structure	VAR	Туре	UINT16	Mapping	RPDO	Access	RO

To set the time until status word – zero speed detection is canceled.

Index 6071h	Label	Target torq	lue		Mode	CS	Г	PT
	Range	-32768~32767			Default	100	Unit	0.1%
	Structure	VAR	Туре	INT16	Mapping	RPDO	Access	RW

To set target torque for profile and cyclic torque mode.

Index	Label	Maximum torque			Mode	F		
6072h	Range	0~65535	0~65535			3000	Unit	0.1%
007211	Structure	VAR	Туре	UINT16	Mapping	RPDO	Access	RW

To set max torque for servo drive, limited by motor's highest torque.

Index	Label	Maximum	current		Mode	F		
6073h	Range	0~65535			Default	3000	Unit	0.1%
007311	Structure	VAR	Туре	UINT16	Mapping	TPDO	Access	RO

To set max. current for servo driver.

Index	Label	Torque De	mand		Mode	F			
6074h	Range	-32768~32767			Default	0	Unit	0.1%	
007411	Structure	VAR	Туре	INT16	Mapping	TPDO	Access	RO	
Internal command torque									

Index	Label	Motor Rate	ed Curre	nt	Mode	F		
6075h	Range	0~214748	3647		Default	3000	Unit	mA
007311	Structure	VAR	Туре	INT32	Mapping	TPDO	Access	RO
Shows motor rated current.								

Index	Label	Motor Rate	ed Torqu	e	Mode	F		
6076h	Range	0~214748	3647		Default	3000	Unit	mN.m
007011	Structure	VAR Type INT32			Mapping	TPDO	Access	RO
Shows motor rated torque.								

Index	Label	Torque Act	tual Valu	e	Mode	F		
6077h	Range	-32768~3	2767		Default	0	Unit	0.1%
007711	Structure	VAR	Туре	INT16	Mapping	TPDO	Access	RO

Shows servo driver actual torque feedback

Index 6078h	Label	Current Ac	tual Valu	ne	Mode	F		
	Range	-32768~32767			Default	0	Unit	0.1%
	Structure	VAR	Туре	INT16	Mapping	TPDO	Access	RO

Shows servo drive actual current value

Index 6079h	Label	DC Link C	ircuit Vo	ltage	Mode	F		
	Range	0~214748	3647		Default	0	Unit	mV
	Structure	VAR	Туре	UINT32	Mapping	TPDO	Access	RO

Shows DC bus voltage across P, N terminals

Index	Label	Target pos	ition		Mode	PP		CSP	
607Ah	Range	-2147483	647~214	17483647	Default	0	Unit	command	
007 All	Structure	VAR	Туре	INT32	Mapping	RPDO	Access	RW	

To set the target position under profile and cyclic position mode.

Index	Label	Home Offs	et		Mode	НМ			
607Ch	Range	-2147483	647~214	17483647	Default	0	Unit	command	
007011	Structure	VAR	Туре	INT32	Mapping	RPDO	Access	RW	
To get position effect to companyous fee the deviction of machanical existing from mater evision									

To set position offset to compensate for the deviation of mechanical origin from motor origin under homing

Index 607Dh-01	Label	Min Position	n Limit		Mode	PP		CSP	
	Range	-2147483	647~214	17483647	Default	0	Unit	command	
	Structure	VAR	Туре	INT32	Mapping	RPDO	Access	RW	

To set lower limit with calculated position and actual position using absolute position after homing.

Index 607Dh-01	Label	Max Positi	on Limit		Mode	PP		CSP	
	Range	-2147483	647~214	17483647	Default	0	Unit	command	
	Structure	VAR	Туре	INT32	Mapping	RPDO	Access	RW	

To set upper limit with calculated position and actual position using absolute position after homing.

Index 607Eh	Label	Polarity			Mode	F		
	Range	0x0 – 0xFF			Default	0x0	Unit	command
	Structure	VAR	Туре	UINT8	Mapping	RPDO	Access	RW

Set input polarity of the command.

Mod	le	Set Value
Danitian	PP	0: Rotate in the same direction as the position command
Position	НМ	128: Rotate in the opposite direction to the position command
mode	CSP	120: Notate in the opposite direction to the position command
Velocity	PV	0: Rotate in the same direction as the position command
mode	CSV	64: Rotate in the opposite direction to the position command
Torque	PT	0: Rotate in the same direction as the position command
mode	CST	32: Rotate in the opposite direction to the position command
ALL		0: Rotate in the same direction as the position command
mode		224: Rotate in the opposite direction to the position command

	Label	Max Profile	e Velocit	у	Mode	PP	НМ	PV	CST
Index 607Fh	Range	0~214748	0~2147483647			21474 83647	Unit	Con /s	nmand
	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW	

To set max allowable velocity. Limited by 6080

Index	Label	Max Motor	Speed		Mode	F		
6080h	Range	0~214748	3647		Default	6000	Unit	r/min
000011	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW

To set the maximum allowable motor velocity.

Index	Label	Profile velo	ocity		Mode		PP		
6081h	Range	0~214748	3647		Default	10000	Unit	Command/s	
000111	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW	

To set target velocity. Limited by 607Fh.

Index	Label	Profile acc	eleration	n	Mode	PP		PV
6083h	Range	1~214748	1~2147483647			10000	Unit	command/s ²
000311	Structure	VAR	VAR Type UINT32			RPDO	Access	RW

To set motor acceleration

Index	Label	Profile dec	eleratio	n	Mode	PP		PV
6084h	Range	1~214748	3647		Default	10000	Unit	command/s ²
000411	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW

To set motor deceleration

Index	Label	Quick Stop	Decele	Mode	CSP	CSV	PP	PV	НМ	
6085h	Range	1~2147483647			Default	1000000	00 1	Unit	comm	and/s²
000311	Structure	VAR	VAR Type UINT32			RPDO	Α	ccess	RW	

To set the deceleration during an emergency stop

Index	Label	Torque slo	ре		Mode		PT		
6087h	Range	1~214748	3647		Default	5000	Unit	0.1%/s	
000711	Structure	VAR	VAR Type UINT32			RPDO	Access	RW	
	To set value:	s for tenden	for tendency torque command						

To set values for tendency torque command

Index	Label	Encoder In	cremen	ts	Mode		PT	
608Fh-01	Range	0~214748	3647		Default	0	Unit	encoder
000111-01	Structure	VAR	VAR Type UINT32			TPDO	Access	RO
	To set encod	der resolution	า					

Index	Label	Motor Rev	olutions		Mode		F	
6091h-01	Range	1~214748	3647		Default	1	Unit	r
003111-01	Structure	VAR	Type	UINT32	Mapping	RPDO	Access	RW

To set electronic gear ratio numerator

Index	Label	Shaft Revo	olutions		Mode	F		
6091h-02	Range	1~214748	3647		Default	1	Unit	r
000111 02	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW

To set electronic gear ratio denominator

Index	Label	Feed			Mode	F		
6092h-01	Range 1~2147483647				Default	10000	Unit	Command/r
003211-01	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW

If 6092h-01(Feed constant) is not equal to 608Fh(Position encoder resolution), then: Electronic gear ratio = Encoder increments / 6092h-01

If 6092h-01(Feed constant) is equal to 608Fh(Position encoder resolution), then:

Electronic gear ratio = 6091-01 / 6092h-01

Index	Label	Homing m	ethod		Mode	НМ		
6098h	Range	-6 ~ 37			Default	19	Unit	-
003011	Structure	VAR	Туре	UINT8	Mapping	RPDO	Access	RW

The table below describes the velocity, direction and stopping conditions of each homing methods.

Valor	Descript	ion			
Value	Velocity	Direction	Stop		
-6	Low	Negative	When torqu	e reached	
-5	Low	Positive	When torqu	e reached	
-4	High	Negative		nen torque reached, after	torque is gone
-3	High	Positive	Inversed wh	nen torque reached, after	torque is gone
-2	High	Negative	Inversed who	en torque reached, recei	ved 1 st Z-signal after torque is gon
-1	High	Positive	Inversed who	en torque reached, recei	ved 1 st Z-signal after torque is gon
	Direction	Decelera	ation point	Home	Before Z-signal
1	Negative	Negative	e limit switch	Motor Z-signal	Negative limit switch falling edge
2	Positive	Positive	limit switch	Motor Z-signal	Positive limit switch falling edg
3	Positive	Homi	ng switch	Motor Z-signal	Falling edge on same side of homing switch
4	Positive	Homi	ng switch	Motor Z-signal	Rising edge on same side of homing switch
5	Negative	Homi	ng switch	Motor Z-signal	Falling edge on same side of homing switch
6	Negative	Homi	ng switch	Motor Z-signal	Rising edge on same side of homing switch
7	Positive	Homi	ng switch	Motor Z-signal	Falling edge on same side of homing switch
8	Positive	Homi	ng switch	Motor Z-signal	Rising edge on same side of homing switch
9	Positive	Homi	ng switch	Motor Z-signal	Rising edge on same side of homing switch
10	Positive	Homi	ng switch	Motor Z-signal	Falling edge on same side of homing switch
11	Negative	Homi	ng switch	Motor Z-signal	Failling edge on same side of homing switch
12	Negative	Homi	ng switch	Motor Z-signal	Rising edge on same side of homing switch
13	Negative	Homi	ng switch	Motor Z-signal on other side of homing switch	Rising edge on other side of homing switch
14	Negative	Homi	ng switch	Motor Z-signal on other side of homing switch	Falling edge on other side of homing switch
15					
16					
17-32	Similar w	ith 1-14, bu	t deceleration	point = homing point	
33	Home in	negative dir	ection, Homin	ng point = motor Z-signal	
34	Home in	positive dire	ection, Homing	g point = motor Z-signal	
35-37	Set curre	nt position a	as homing poi	nt	

Index	Label	Speed Dur	ring Sea	rch For Switch	Mode		НМ	
6099h-01	Range	0~214748	3647		Default	10000	Unit	Command/s
003311-01	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW
	To set the sr	need used in	homina					

Index	Label	Speed Dur	ing Sea	rch For Zero	Mode	НМ			
6099h-01	Range	0~214748	3647		Default	5000	Unit	Command/s	
009911-01	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW	
To set the speed used in homing									

Index	Label	Homing ac	celeration	on	Mode	НМ			
609Ah	Range 1~2147483647					5000	Unit	Command/s ²	
003711	Structure	VAR	Туре	UINT32	Mapping	TPDO	Access	RO	
To set acceleration and deceleration used in homing									

Index	Label	Position O	ffset		Mode	CSP		
60B0h	Range	-2147483	647~214	17483647	Default	0	Unit	Command
000011	Structure	VAR	Туре	INT32	Mapping	TPDO	Access	RO
	To add offse							

Index	Label	Velocity Offset			Mode	CSP	CS	V PP	PV	НМ
60B1h	Range	-2147483	647~214	17483647	Default	0		Unit	Comm	and/s
005111	Structure	VAR	Туре	Mapping	TPDO)	Access	RO		
	To add offse	t to velocity	demand	value.						

Index	Label	Torque Off	set		Mode	F		
60B2h	Range	-32768~3	2767		Default	0	Unit	0.1%
000211	Structure	VAR	Туре	INT32	Mapping	TPDO	Access	RO
To add offset to torque demand value.								

Index	Label	Touch Pro	be functi	ion	Mode		F	
60B8h	Range	0x0-0xFF	FF		Default	0x0	Unit	-
OODON	Structure	VAR	Туре	UINT16	Mapping	RPDO	Access	RW

Bit	Description	Details		
0	Probe 1	0Disable		
0	Probe i	1Enable		
		0Single trigger, triggered only when trigger		
1	Probe 1 trigger mode	signal is valid		
		1—Continuous trigger		
2	Probe 1 trigger signal	0—Probe 1 captured		
	selection	1Z signal		
3	Reserved	-		
4	Probe 1 rising edge	0Disable		
4	enabled	1Enable		
5	Probe 1 falling edge	0Disable		
5	enabled	1Enable		
6-7	Reserved	-		
0	Dualina O	0Disable		
8	Probe 2	1Enable		
		0Single trigger, triggered only when trigger		
9	Probe 2 trigger mode	signal is valid		
		1—Continuous trigger		
10	Probe 2 trigger signal	0—Probe 2 captured		
10	selection	1Z signal		
11	Reserved	-		
12	Probe 2 rising edge	0—Rising edge not latched		
12	enabled	1—Rising edge latched		
13	Probe 2 falling edge	0—Falling edge not latched		
13	enabled	1—Falling edge latched		
14-15	Reserved	_		

Index	Label	Touch Pro	be statu	S	Mode		F	
60B9h	Range	0x0-0xFF	FF		Default	0x0	Unit	-
000011	Structure	VAR	Туре	UINT16	Mapping	TPDO	Access	RO

Bit	Definition	Details
0	Probe 1	0Disable
U	1 TODE 1	1Enable
1	Probe 1 rising edge latching	0—Rising edge not latched
!	Probe i fishing edge laterning	1—Rising edge latched
2	Drobe 1 falling adds latebing	0—Falling edge not latched
	Probe 1 falling edge latching	1—Falling edge latched
3-5	-	-
6-7	-	-
8	Probe 2	0Disable
0	Probe 2	1Enable
0	Drobo 2 riging odgo lotobing	0—Rising edge not latched
9	Probe 2 rising edge latching	1—Rising edge latched
10	Drobo 2 falling adge letching	0—Falling edge not latched
10	Probe 2 falling edge latching	1—Falling edge latched
11-13	-	-
14-15	-	-

Index	Label	Touch Prol	be 1 Pos	sitive Position	Mode		F	
60BAh	Range -2147483647~2147483647				Default	0	Unit	Command
OUDAII	Structure	VAR	VAR Type INT32			TPDO	Access	RO
	•						•	

Shows position feedback at rising edge of probe 1 signal

Index	Label	Touch Pro	be 1 Ne	gative Position	Mode		F	
60BBh	Range -2147483647~2147483647					0	Unit	Command
OODDII	Structure	VAR	Туре	INT32	Mapping	TPDO	Access	RO
Shows position feedback at falling edge of probe 1 signal								

Index	Label	Touch Pro	be 2 Pos	sitive Position	Mode	F				
60BCh	Range -2147483647~2147483647				Default	0	Unit	Command		
OODON	Structure	VAR	VAR Type INT32			TPDO	Access	RO		
Shows position feedback at rising edge of probe 2 signal										

Index	Label	Touch Prol	be 2 Ne	gative Position	Mode	F				
60BDh	Range	-2147483647~2147483647			Default	0	Unit	Command		
OODDII	Structure	VAR	VAR Type INT32			TPDO	Access	RO		
Shows position feedback at falling edge of probe 2 signal										

Index	Label	Max Acc	eleration	า	Mode		F					
60C5h	Range	1~2147	483647		Default	100000000	Unit	Command/s ²				
000311	Structure	VAR Type UINT32			Mapping	RPDO	Access	RW				
To set upper limit of acceleration.												
Indov	Label	Max Dec	celeratio	n	Mode		F					
Index	Label Range	Max Dec		n	Mode Default	100000000		Command/s ²				
Index 60C6h				n UINT32		100000000 RPDO		Command/s ²				

Index	Label	Touch Probe 1 Positive Edge Counter			Mode	F				
60D5h	Range	0~65535	0~65535 VAR Type UINT16			0	Unit -			
	Structure	VAR				TPDO	Access	RO		
Shows the number of times probe 1 rising edge latched.										

Index	Label	Touch Probe 1 Negative Edge Counter			Mode	F		
60D6h	Range	0~65535			Default	0	Unit	-
	Structure	VAR Type UINT16			Mapping	TPDO	Access	RO
							•	

Shows the number of times probe 1 falling edge latched.

Index	Label	Touch Probe 2 Positive Edge Counter			Mode	F		
60D7h	Range	0~65535			Default	0	Unit	
	Structure	VAR Type UINT16			Mapping	TPDO	Access	RO

Shows the number of times probe 2 rising edge latched.

Index	Label	Touch Probe 2 Negative Edge Counter			Mode	F		
60D7h	Range	0~65535			Default	0	Unit	-
	Structure	VAR	Туре	UINT16	Mapping	TPDO	Access	RO

Shows the number of times probe 2 falling edge latched.

Index	Label	Positive To	rque Lir	nit	Mode	F		
60E0h	Range	0~65535			Default	3000	Unit	0.1%
OOLOH	Structure	VAR	Туре	UINT16	Mapping	RPDO	Access	RW

To set the maximum torque of servo drive in positive direction

Index	Label	Negative 7	orque L	imit	Mode	F		
60E1h	Range	0~65535			Default	3000	Unit	0.1%
60E1n	Structure	VAR	Туре	UINT16	Mapping	RPDO	Access	RW

To set the maximum torque of servo drive in negative direction

Index Label Following Error Actual Value					Mode	CSP	PP	НМ
60F4h	Range	-2147483	647~214	17483647	Default	0	Unit	Command
001 411	Structure	VAR	VAR Type INT32			TPDO	Access	RO

Shows position following error

Index	Label	Control Eff	ort		Mode	CSP	PP	НМ
60FAh	Range	-2147483	-2147483647~2147483647			0	Unit	Command/s
buran	Structure	VAR	Туре	INT32	Mapping	TPDO	Access	RO

Shows velocity demand value(Position loop output)

Index	Label	Position D	emand I	nternal Value	Mode	CSP	PP	НМ
60FCh	Range	-2147483647~2147483647			Default	0	Unit	encoder
001 011	Structure	VAR	Туре	INT32	Mapping	TPDO	Access	RO

Shows position demand value of servo drive.

Inde		abel	Digital Inputs				Mod	е		F	
60FDh	Ra	ange	0x0~0x7F)x0~0x7FFFFFF		Defa	ult	0	Unit	-	
001 2		tructure	VAR	Туре	UINT32		Мар	ping	TPDO	Access	RO
Th	ne bits of	60FDh ob	ect are fund	tionally	defined a	s follov	<i>I</i> :				
	Bit31	Bit30	Bit29	9	Bit28	Bit	Bit27		t26	Bit25	Bit24
.	7 cianal	Poponi	nd Booon	od E	Pagaryad	Drob		Dro	ho 1	DDAKE	INP/V-COIN

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Z signal	Reserved	Reserved	Reserved	Probe 2	Probe 1	BRAKE	INP/V-COIN
Z Signal	Neserveu	Neserveu	Neserveu	FIODE 2	FIODE	DNANL	/TLC
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
E-STOP	Reserved	Reserved	Reserved	Reserved	Reserved	DI14	DI13
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
DI12	DI11	DI10	DI9	DI8	DI7	DI6	DI5
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DI4	DI3	DI2	DI1	Reserved	HOME	POT	NOT

Index	Label	Physical C	utputs		Mode	Mode F			
60FEh-01	Range	0x0~0x7F	FFFFFF	FFFFF		0x0	Unit	-	
001 E11-01	Structure	ARRAY	Type L	JINT32	Mapping	RPDO	Access	RW	
The bits of	60FEh object	are function	ally define	d as follow:					
Bit									
Sub-ind	31~21 ex	21	20	19	18	17	16	15~0	

Index	Label	Bit Mask			Mode F				
60FEh-02	Range	0x0~0x7F	FFFFFF		Default	0xFFFF000	0 Unit	-	
JOI LII-02	Structure	ARRAY	Туре	UINT32	Mapping	RPDO	Acce	ss RW	
The bits of a 60FEh ob Bit Sub-index 31~21		ct are functi	onally de	fined as follo	ow: 18	17	16	15~0	
Sub-ind									

Index	Label	Target velocity			Mode	CSV		PV	
60FFh	Range	-2147483	-2147483647~2147483647			0	Unit	Command/s	
buffn	Structure	VAR	Туре	INT32	Mapping	RPDO	Access	RW	

Shows set target velocity. Limited by 6080h

Index	Label	Supported	Drive N	lodes	Mode	F		
6502h	Range	0x0~0x7FFFFFF			Default	0x0	Unit	-
030211	Structure	ARRAY Type UINT32			Mapping	TPDO	Access	RO
Shows the control modes supported by the servo drive.								

Chapter 4 Servo Drive Operation

4.1 Get Started with Driver Operation

4.1.1 Checklist before operation

No.	Description
	Power supply
1	The voltage of main and control circuit power supply is within rated values.
2	Power supply polarity is rightly connected.
	Wiring
1	Power supply input is rightly connected.
2	Driver's power output UVW matches UVW terminals on the main circuit.
3	No short circuit of driver's input and output UVW terminals.
4	Signal cables are correctly and well connected.
5	Drivers and motors are connected to ground
6	All cables under stress within recommended range.
7	No foreign conductive objects inside/outside the driver.
	Mechanical
1	Driver and external holding brake are not place near combustibles.
2	Installations of driver, motor and axis is fastened.
3	Movement of motors and mechanical axes are not obstructed.

4.1.2 Power On

Connect 400V power supply into main power supply R, S, T terminals and 220V power supply into control circuit power supply L1C, L2C. After power on, light indicator will light up and front panel will display **rEAdy**, then LED initial status will be displayed. Driver is ready for operation if no alarm occurs.

4.1.3 Trial Run

Servo drive must be disabled before performing trial run. For safety precautions, please JOG under minimal velocity.

Related Parameters

No.	Parameters	Label	Set value	Unit
1	PA0.01	Control mode settings	9	/
2	PA6.04	JOG trial run command velocity	User defined	r/min
3	PA6.25	Trial run acc-/deceleration time	User defined	ms/1000rpm

- Please make sure the mechanical axis is within the range of motion and travelled distance should not be too long to avoid collision.
- Set optimal velocity and acceleration for trial run (not too high!)
- Do not modify any gain related parameters during motion to avoid vibration.

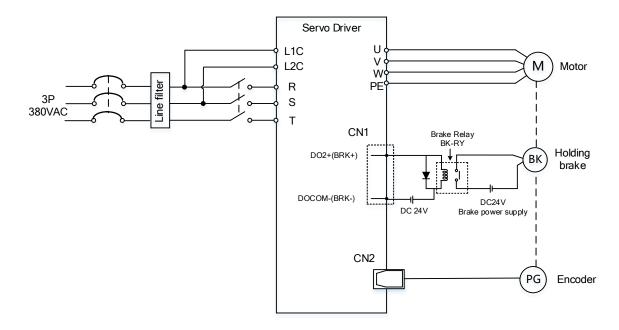
Please refer to "AF_Jog Trial Run" for detailed explanations on how to perform trial run using front panel operation

4.1.4 Motor rotational direction settings

Motor rotational direction can be changed through PA0.06 without changing the polarity of the input command.

iput commi	out command.								
	Label	Command polarity inversion	Mode	F					
PA0.06	Range	0 ~ 1	Default	0	Unit				
	Activation	After restart	Index	2006h					
Used to change the rotational direction of the motor.									
Set value	Details								
0	Polarity of the polarity of com	command is not inversed. The dire	ection of rot	ation is cons	istent with	the			
1	Polarity of command is inversed. The direction of rotation is opposite to the polarity of command.								
	Note: Rotational direction of the motor is recommended to be set through object dictionary 607E. However, PA0.06 has higher priority than object dictionary 607E. 607E only takes effect when PA0.06 = 0.								

4.1.5 Holding Brake Settings


Holding brake is designed to hold the axis in position to prevent it from sliding due to applied external forces when the driver is disabled. Holding brake is optional and depends on the model of motor chosen for the application.

- Please only use holding brake when motor is stopped. No applicable when motor is in motion.
- Holding brake coil has no polarity.
- Motor should be disabled after stopped.
- There is some noise when motors with brake are in motion but that doesn't affect its functionality.
- Magnetic sensors might be affected when the holding brake is on. Please be aware.

Holding brake wiring

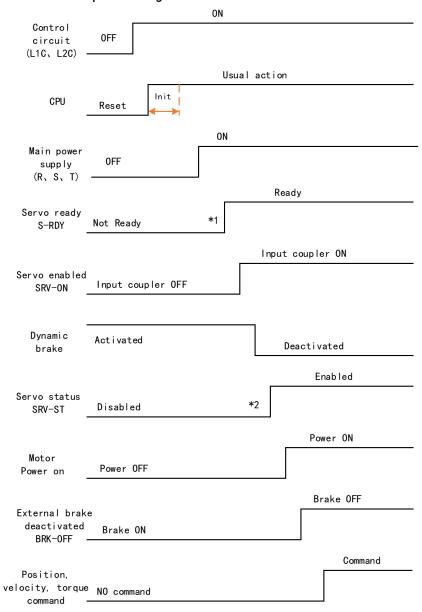
Holding brake input signal is without polarity. An isolated 24V switching power supply is recommended to prevent abnormal holding brake behavior in case of sudden drop in working current or voltage.

Wiring diagram of motor holding brake

4.1.6 Servo Running

1. Enable servo driver

Check if CN3/CN4 is connected properly. Servo driver is in ready mode. Motor is stopped and holding brake is activated. Front panel display shows 402 state machine = Operational, EtherCAT communication status = operational, Running mode = 8, servo is in stop mode.



2. Motor starts to move after command input

- i. On first time operation, please use suitable command at low velocity. Confirm if motor is working normally.
- ii. Check if motor rotational direction is correct. If not, please check input command or parameter settings. (Pr0.06).
- iii. If motor is working normally, motion data such as motor rotational velocity "d01SP" and actual torque feedback "d04tr" can be monitored on the front panel or through Motion Studio.

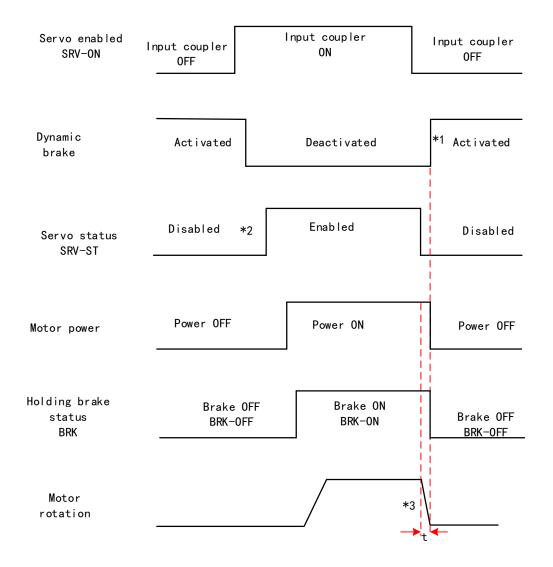
3. Power on sequence diagram

Please enter servo status, position, velocity, torque command as sequence diagram above.

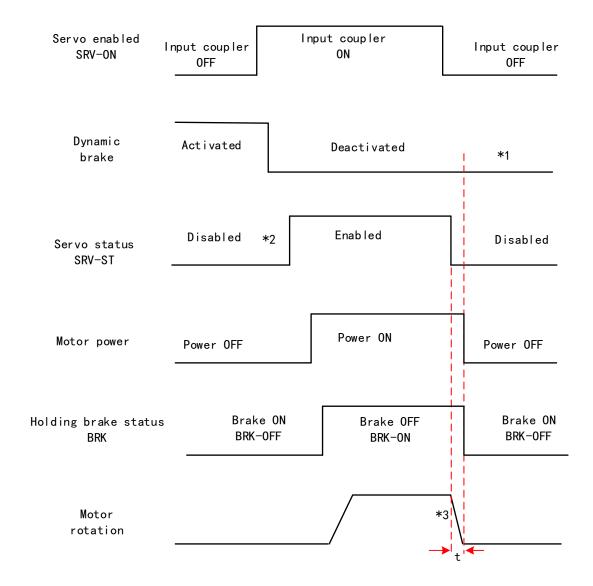
- ** 1. S-RDY signal is given after CPU initialization and main power supply powered on.
- 2. SRV-ST signal is received when servo driver is enabled. Command input is not allowed yet.

4.1.7 Servo stop

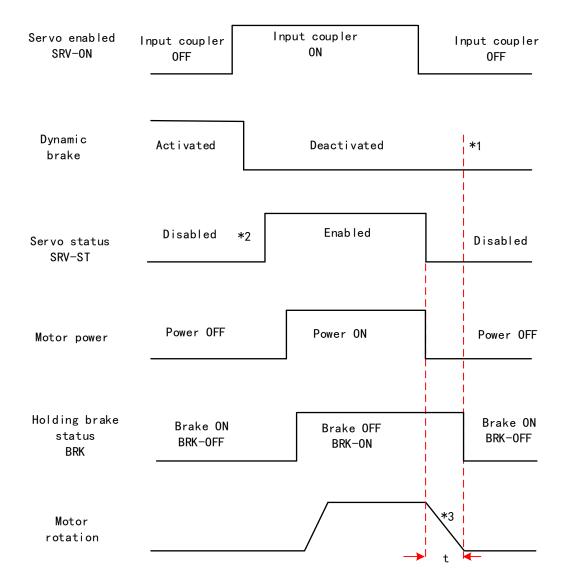
Servo stopping are of 3 different methods: Servo braking method, free stopping method, dynamic braking method.


Stopping method	Description	Details
Servo braking	Servo driver delivers braking torque in	Quick stopping but mechanical
	opposite direction	impact might exist
Free stopping	Motor power cut off. Free to move until	Smooth deceleration, low mechanical
	velocity = 0. Affected inertia, friction	impact but slow stopping
	and other factors	
Dynamic braking	Brake activated when in motion	Quick stopping but mechanical
		impact might exist

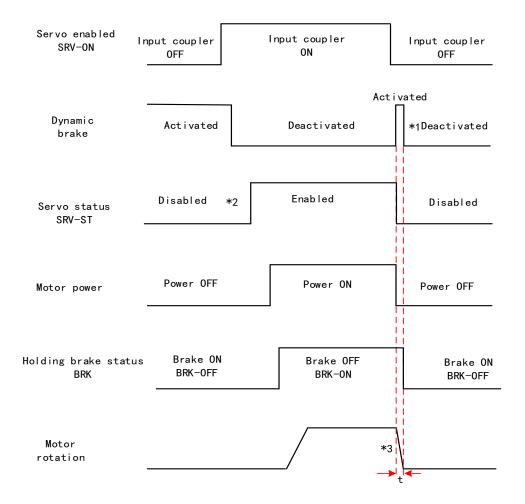
Stopping status	Status after stopped
Free moving	Motor is powered off, rotor is free to rotate
Dynamic braking	Motor is powered off, rotor is not free to rotate
Holding brake stopping	Motor axis is locked, cannot rotate freely


Motor stopping(Servo disabled)- Sequence Diagram

Servo braking method. Status after stopping: Dynamic braking

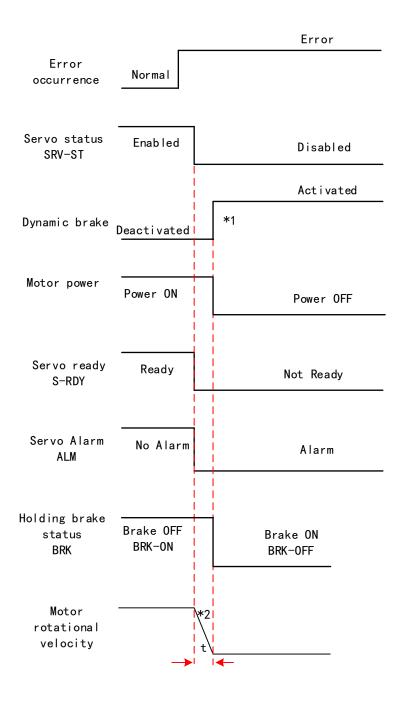


Servo stopping method. Status after stopping: free moving

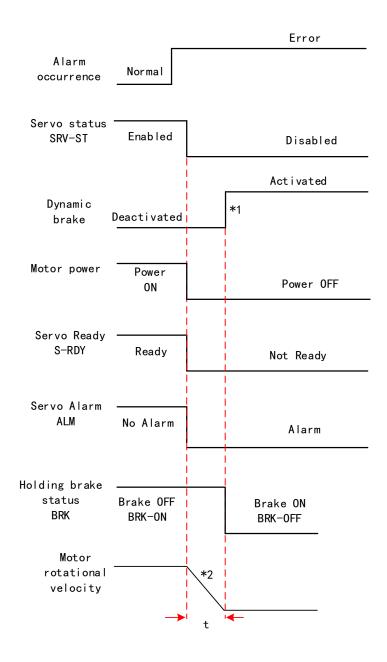


Free stopping method. Status after stopping: Free moving

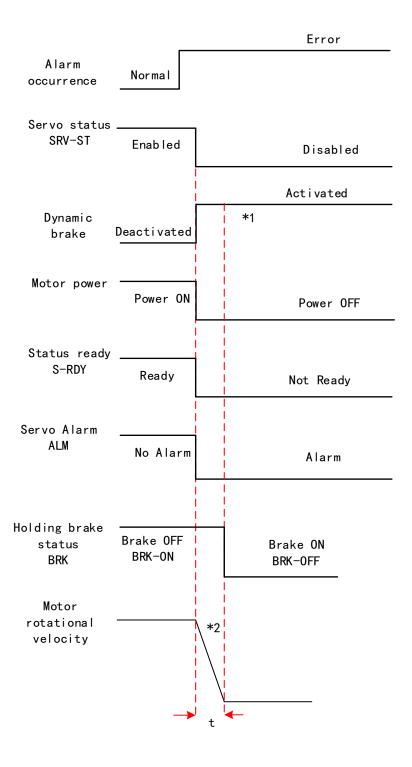
Dynamic braking method. Status after stopping: Free moving



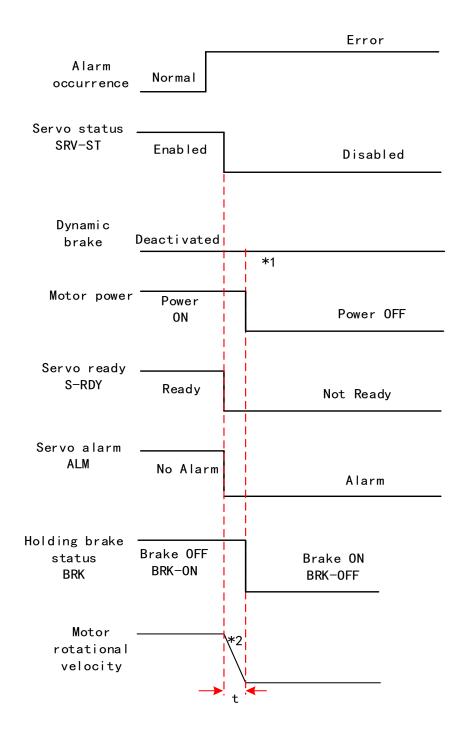
- ** 1. Status after stopping is as defined in PA5.06.
 - 2. SRV-ST signal is received when servo driver is enabled. Command input is not allowed yet.
- 3. Servo stopping method is as defined in PA5.06; braking torque in opposite direction to decelerate the motor is as defined in PA5.11. Deceleration time t is determined by whichever comes first between time set in PA6.14 and time needed for motor to drop below velocity set in PA4.39. After deceleration time t, dynamic braking will be off and holding brake signal will be set to OFF (Holding brake is activated. Although BRK-OFF signal is valid, actual activation of holding brake is dependent on whether the motor comes with holding brake).
- 4. BRK-ON signal doesn't indicate the activation of holding brake but the validation of the signal. Holding brake is not applied when BRK-ON signal is valid. Same idea goes for BRK-OFF signal.


Stopping when alarm occurs - Sequence Diagram

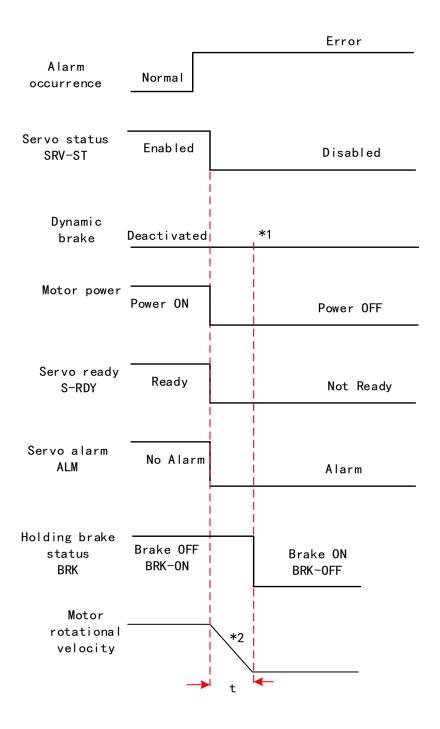
Servo braking method. Status after stopping: Dynamic braking



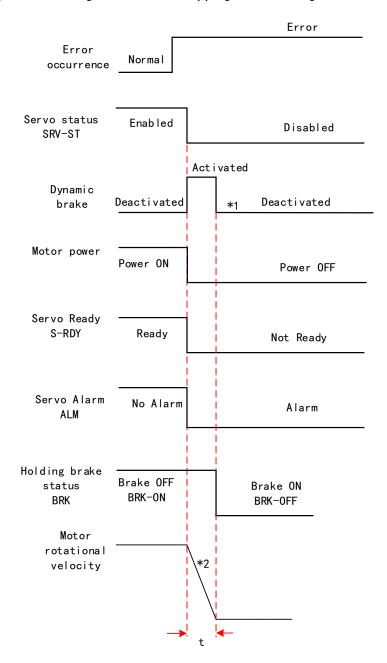
Free stopping method. Status after stopping: Dynamic braking



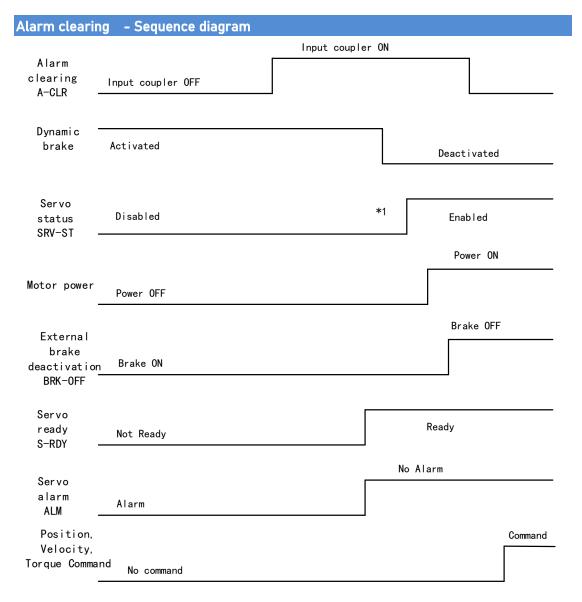
Dynamic braking method. Status after stopping: Dynamic braking



Servo braking method. Status after stopping: Free moving



Free stopping method. Status after stopping: Free moving


Dynamic braking. Status after stopping: Free moving

** 1. Status after stopping is as defined in Pr5.10.

- 2. Servo stopping method is as defined in Pr5.10. Deceleration time t is determined by whichever comes first between time set in Pr6.14 and time needed for motor to drop below velocity set in Pr4.39. After deceleration time t, dynamic braking will be off and holding brake signal will be set to OFF (Holding brake is activated. Although BRK-OFF signal is valid, actual activation of holding brake is dependent on whether the motor comes with holding brake).
- 3. BRK-ON signal doesn't indicate the activation of holding brake but the invalidation of the signal. Holding brake is not applied when BRK-ON signal is valid. Same idea goes for BRK-OFF signal.

^{** 1.}SRV-ST signal is received when servo driver is enabled. Command input is not allowed yet

2. BRK-OFF signal doesn't indicate the deactivation of holding brake but the invalidation of the signal. Holding brake is applied when BRK-OFF signal is invalid.

4.2 Electronic gear ratio

When loaded axis moved for 1 command unit, it corresponds to motor encoder unit which is converted in more comprehensible physical units such as μm . The use of electronic gear ratio is to turn the movement in physical units to required pulse count equivalency.

Rotor might be connected to load through reducer or other mechanical structures. Hence, the gear ratio is closely related to reducer gear ratio, position encoder resolution and mechanical dimensions related parameters.

Electronic gear ratio =
$$\frac{\text{Encoder resolution}}{\text{Loaded axis resolution}}$$

Electronic gear can be set through Pr0.08. If Pr0.08 \neq 0, Pr0.08 is valid. If Pr0.08 = 0, object dictionary 6092-01 is valid.

Command pulse count per motor revolution needs to be \geq Encoder Pulse Count per Revolution / 8000.

EL7-EC series comes with motors with 23-bit encoder. Pulse count per revolution for 23-bit encoder = 8388608. From the condition above, the command pulse count per motor revolution for 23-bit encoder \geq 1049.

	Label	Command pulse count per revolution	Mode		F				
PA0.08	Range	nge 0~8388608		0	Unit	P-			
	Activation	After restart				2008h			
	Pulses per revolution can be set using object dictionary 608F, 6091, 6092. However, PA0.08								
	has higher priority.								

Index 608Fh-01	Label	Encoder Increments			Mode	PT		
	Range	0~2147483647			Default	0	Unit	encoder
	Structure	VAR	Туре	UINT32	Mapping	TPDO	Access	RO
To set encoder resolution								

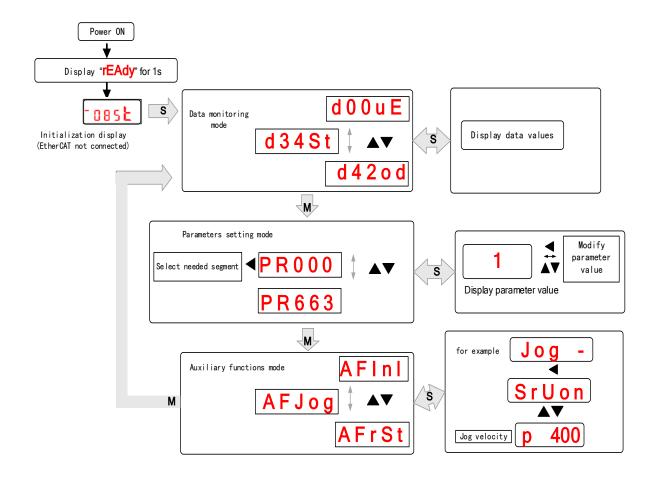
Index	Label	Motor Revolutions			Mode	F		
6091h-01	Range	1~2147483647			Default	1	Unit	r
003111-01	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW
To set electronic gear ratio numerator								
Index	Label	Shaft Revolutions			Mode	F		
6091h-02	Range	1~2147483647			Default	1	Unit	r

	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW
To set electronic gear ratio denominator								
Index	Label	Feed			Mode	F		
6092h-01	Range	1~2147483647			Default	10000	Unit	Command/r
	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW
	If 6092h-01(Feed constant) is not equal to 608Fh(Position encoder resolution), then:							
	Electronic gear ratio = Encoder increments / 6092h-01							
	If 6092h-01(Feed constant) is equal to 608Fh(Position encoder resolution), then: Electronic gear ratio = 6091-01 / 6092h-01							

4.3 Front Panel

Servo Driver front panel consists of 5 push buttons and a 8-segments display. Can be used for displaying of status, alarms, functions, parameters setting and auxiliary functions.

Front panel


Buttons and functions

Label	Symbol	Function
Display	/	Consists of 5 push buttons and a 8-segments display
		To switch between 4 modes:
	М	1. Data monitoring mode : To monitor changes of motion data
Mode		values
Mode		2. Parameters setting mode : To set parameters
		3. Auxiliary functions mode: To operate common functions, such
		as trial run, alarm clearing
Enter	S	To enter or confirm
Up	A	To switch between sub-menus / Increase
Down	▼	To switch between sub-menus / Decrease
Left	◀	To switch between values

4.4 Panel Display and Operation

4.4.1 Panel Operation

Flow diagram of panel operation

- (1) **rEAdY** will be displayed for about 1 second after driver is powered on. Then, automatically enters data monitoring mode and displays initial data value. Otherwise, alarm code will be displayed if error occurs.
- (2) Press M key to switch between modes.

Data monitoring mode \rightarrow Parameters setting mode \rightarrow Auxiliary functions mode Alarm code will be displayed regardless of any mode if alarm occurs. Press **M** to switch to other modes.

- (3) Press ▲ or ▼ to select the type of parameters in data monitoring mode. Press S to confirm.

increase/decrease the value of segment. Press ${\bf S}$ to confirm the modified value(s) and save the parameters.

4.4.2 Data Monitoring Mode

EL7 series servo driver offers the function to monitor different types of data in data monitoring mode. After entering this mode, press S to monitor any data that starts with d. Press S again to get back to data monitoring mode and M to switch to any other modes.

Data list in data monitoring mode

No.	Label	Descriptions	Display	Unit	Data Format (x = numerical value)
0	d00uE	Position command deviation	d00uE	pulse	"xxxx"
1	d01SP	Motor velocity	d01SP	r/min	"r xxxx"
2	d02CS	Position control command velocity	d02CS	r/min	"xxxx"
3	d03Cu	Velocity control command velocity	d03Cu	r/min	"xxxx"
4	d04tr	Actual feedback torque	d04tr	%	"xxxx"
5	d05nP	Feedback pulse sum	d05nP	pulse	"xxxx"
6	d06cP	Command pulse sum	d06CP	pulse	"xxxx"
7	d07	Maximum torque during motion	d07	/	" xxxx"
8	d08FP	Internal command position sum	d08FP	pulse	"xxxx"
9	d09cn	Control mode	d09Cn	/	EtherCAT: " CtPoS "
10	d10lo	I/O signal status	d10 lo	/	-
11	d11Ai	Internal usage	d11Ai	V	-
12	d12Er	Error cause and record	d12Er	/	"Er xxx"
13	d13rn	Warning	d13rn	/	"XXX"
14	d14r9	Regeneration load factor	d14r9	%	"XXX"
15	d15oL	Overload factor	d15oL	%	"XXX"
16	d16Jr	Inertia ratio	d16Jr	%	"XXX"
17	d17ch	Motor not running cause	d17Ch	/	"CP xxx"
18	d18ic	No. of changes in I/O signals	d18ic	/	"xxx"
19	d19	No. of times of overcurrent	d19	/	" xxxx"
20	d20Ab	CSP position command sum	d20Ab	pulse	" xxxx"
21	d21AE	Single turn encoder data	d21AE	pulse	" xxxx"
22	d22rE	Multiturn encoder data	d22rE	r	" xxxx"
23	d23 id	Communication axis address	d23id	/	"id xxx" "Fr xxx"
24	d24PE	Position deviation	d24PE	Unit	" XXXX"

					•
25	d25PF	Motor electrical angle	d25PF	pulse	"xxxx"
26	d26hy	Motor mechanical angle	d26hy	pulse	" xxxx"
27	d27 Pn	Voltage across PN	d27Pn	٧	" XXXX"
28	d28 no	Software version	d28no	/	"d xxx Servo software" "F xxx Communication software" "p xxx Servo power rating"
29	d29AS	Internal usage	d29AS	/	"xxx"
30	d30NS	No. of times of encoder communication error	d30sE	/	"xxx"
31	d31 tE	Accumulated operation time	d31tE	/	" xxxx"
32	d32Au	Automatic motor identification	d32Au	/	"r xxx Motor no." "E xxx Servo no."
33	d33At	Driver temperature	d33At	$^{\circ}$ C	"xxx"
34	d34	Servo status	d34	/	"xxx"
35	d35 SF	Internal usage	d35SF	/	"xxxxxx"
		Following are parameter	s related	to Ether	CAT bus
36	d36	Synchronizing cycle	d36dc	ms	"xxxxxx"
37	d37	No. of times of synchronization loss	d37sc	/	"xxxxxx"
38	d38	Synchronization Type	d38st	freeru n/DC	"xxxxxx"
39	d39	If DC is running	d39dr	/	"xxxxxx"
40	d40	Acceleration and deceleration status	d40sn	/	"xxxxxx"
41	d41	Object dictionary address	d41od	/	"xxxxxx" Index(4 bit)+subindex(2 bit)
42	d42	Object dictionary value	d42od	/	"xxxxxx" 1. If OD does not exist, ODNEXT is displayed. 2. If OD is out of range, ODRNG is displayed.

If EtherCAT is not connected, '-085 t' is displayed after power on.

Description of data monitoring function

When using the front panel to monitor data, data is divided in low/high bit and positive/negative.

Data is differentiated as below.

. 2 .

6 0 8 8 5

 $\begin{array}{ll} \mbox{High bit: } \ 1^{st} \mbox{ and } 2^{nd} \mbox{ values on the right has two decimal points} \\ \mbox{Low bit: } \ 1^{st} \mbox{ and } 2^{nd} \mbox{ values on the right has no decimal point.} \end{array}$

. . 5 0

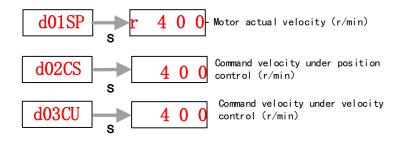
5 0

Positive: 1^{st} and 2^{nd} values on the left has no decimal point. Negative: 1^{st} and 2^{nd} values on the left has two decimal points

1. d00uE Position command deviation

Shows high bit and low bit of position deviation

Positive: 1st and 2nd values on the left has no decimal point. Negative: 1st and 2nd values on the left has two decimal points

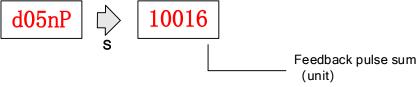

Press ◀ to switch between low and high bit Example: Position command deviation=260885

. 2.

6 0 8 8 5

High bit: 1^{st} and 2^{nd} values on the right has two decimal points Low bit: 1^{st} and 2^{nd} values on the right has no decimal point.

2. d01SP Motor velocity,d02CS Position control command velocity,d03CU Velocity control command velocity



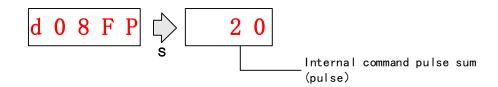
3. d04tr Actual torque feedback

4. d05nP Feedback pulse sum d06CP Command pulse sum

Feedback pulse sum(Encoder feedback pulse)

Press ◀ to switch between high/low bit Example: Feedback pulse sum=210016

Command pulse sum (Command pulse)


Press ◀ to switch between high/low bit Example: Command pulse sum=210017

5. d07 Maximum torque during motion

6. d08FP Internal command pulse sum

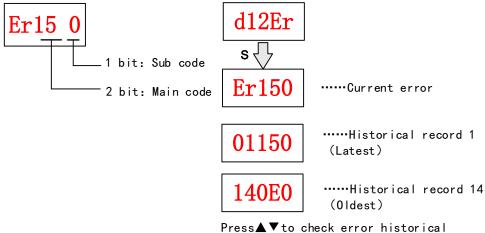
7. d09Cn Control mode

8. d10lo I/O signal status

When the top half of the digital tube is lighted, the signal is valid; when the bottom half of the digital tube is lighted, the signal is not valid. Decimal points represent I/O status, input when lighted, output when not lighted.

Input: From low to high bit(Right to left) DI1,DI2....DI10. Decimal point is lighted to represent input signals.

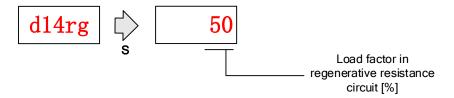
In the example below, DI1, DI8 and DI10 input signal is valid; DI2-DI7, DI9 input signal is invalid.



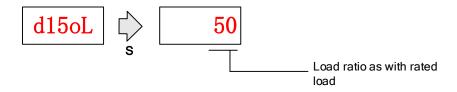
 Output: From low to high bit(Right to left) D01,D02....D010. Decimal point is not lighted to represent output signals.

In the example below, D01 output signal is valid; D02-D010 output signal is invalid.

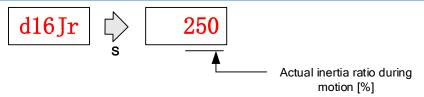
9. d12Er Alarm cause and historical record



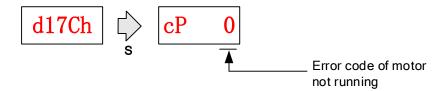
Press ▼ to check error historical record up to 14 records.



10. d14rg Regenerative load factor d15oL Overload factor


Regenerative load factor (Er120 might occur, if the value increases indefinitely)

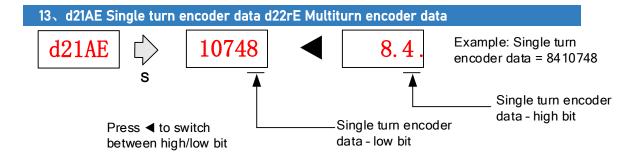
Overload factor (Er100 might occur, if the value increases indefinitely)



11. d16Jr Inertia ratio

Please refer to Inertia Measuring section for detailed explanations.

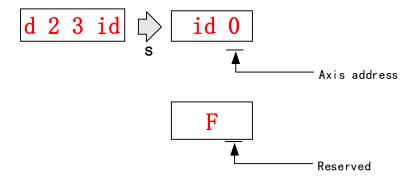
12、d17Ch Motor not running cause

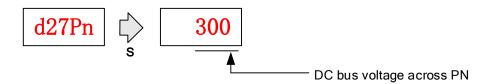


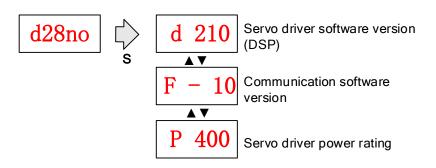
"d17Ch" Motor No Running Cause - Codes & Descriptions

Display Code		Description	Content		
cР	1	DC bus undervoltage	/		
сР	2	No SRV-ON signal	Servo-ON input (SRV-ON) is not connected to COM-		
cР	3	POT/NOT input valid	Pr5.04 = 0, POT is in open circuit, velocity command is in positive direction NOT is in open circuit, velocity command is in negative direction		

cР	4	Driver alarm	1
сP	5	Relay not clicked	/
cР	6	Emergency stop valid	/
cР	7	Position command too low	1
сР	8	Torque limitation	/
cР	9	Zero speed clamp valid	Pr3.15 = 1, Zero speed clamp input is open
cР	10	Velocity mode command velocity too low	In velocity mode, the command velocity is too low
сР	12	Torque mode command torque too low	In torque mode, the torque limit is too low.
сР	13	Velocity limit	Emergency stop command from main bus is valid


For 23-bit encoder, single turn encoder data = 0~8388607.Each value corresponds to certain position in a single revolution of the rotor, clockwise motion as negative, counter clockwise motion as positive. When counter clockwise single turn data > 8388607, multiturn data +1, clockwise single turn data < 0, multiturn data -1.

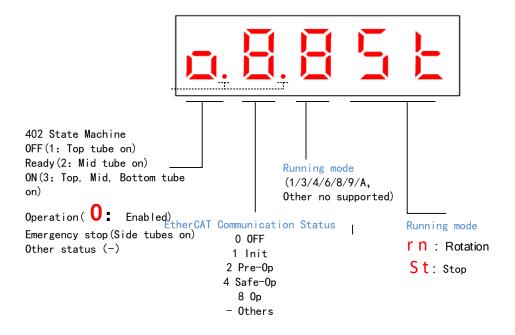

Multiturn encoder data range:-32768 \sim +32767, As no. of revolution goes over range,32767 will jump to -32768 \sim -32767(counter clockwise); -32768 will jump to 32767 \sim 32766 (clockwise)


14.d23id Communication axis address

15. d27Pn DC bus voltage



16. d28no Software version



17. d31tE Accumulated operation time

18. d34 Servo driver status display

Driver status: 402 state machine, EtherCAT communication, running mode, running

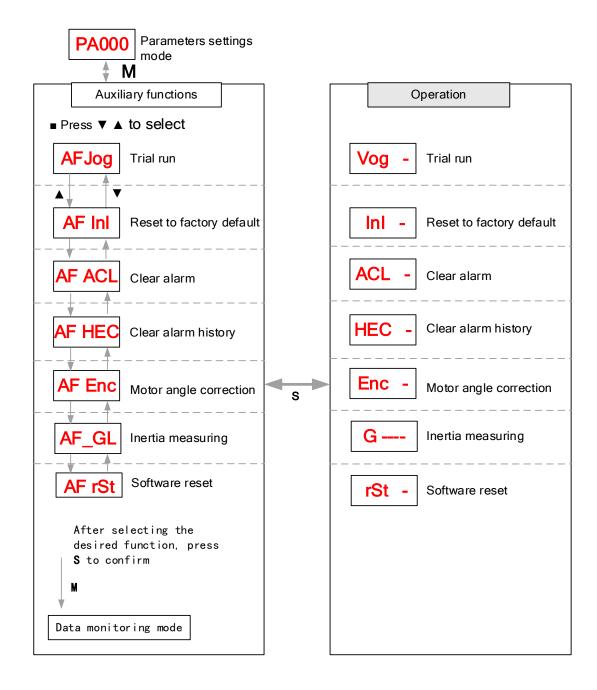
Display setting at power on

■ Default setting for initialization display settings at power on is d34,if any other display is required, please set on PA5.28.

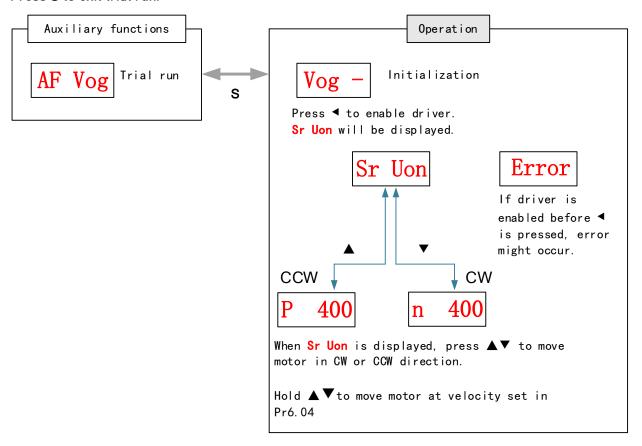
Please refer to PA5.28 for any display content required on the front panel during initialization

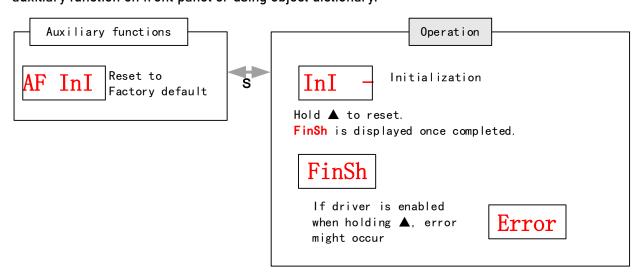
	Label	LED initial status	Mode		F	
PA5.28	Range	0~42	Default	34	Unit	-
	Activation	After restart			Index	2528h

Set value	Content	Set value	Content	Set value	Content
0	Position command deviation	15	Overload rate	30	No. of encoder communication error
1	Motor speed	16	Inertia ratio	31	Accumulated operation time
2	Position command velocity	17	No rotation cause	32	Automatic motor identification
3	Velocity control command	18	No. of changes in I/O signals	33	Driver temperature
4	Actual feedback torque	19	Number of over current signals	34	Servo status
5	Sum of feedback pulse	20	Absolute encoder data	35	1
6	Sum of command pulse	21	Single turn position	36	Synchronous period
7	Maximum torque during motion	22	Multiturn position	37	No. of synchronous loss
8	1	23	Communication axis address	38	Synchronous type
9	Control mode	24	Encoder position deviation	39	Whether DC is running or not
10	I/O signal status	25	Motor electrical angle	40	Acceleration/ Deceleration status
11	1	26	Motor mechanical angle	41	Sub-index of OD index
12	Error cause and history record	27	Voltage across PN	42	Value of sub-index of Olindex
13	Alarm code	28	Software version		
14	Regenerative load rate	29	/		


4.4 Parameter saving using front panel

After modifying the selected parameter to desired values, press ${\bf S}$ to confirm and save the changes.

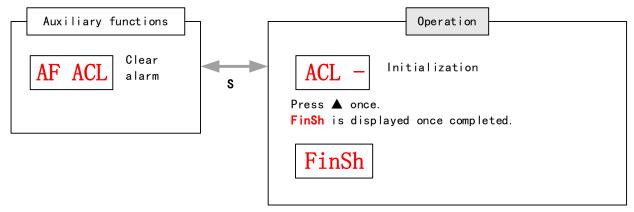

4.5 Auxiliary functions


AF jog Trial run

Please disable servo driver before performing any trial run. Please don't modify gain related parameters during trial run to prevent any occurrence of mechanical vibrations. Press **S** to exit trial run.

AF Inl Reset to factory default

To reset parameters settings to factory default. Can be used to reset parameters using auxiliary function on front panel or using object dictionary.

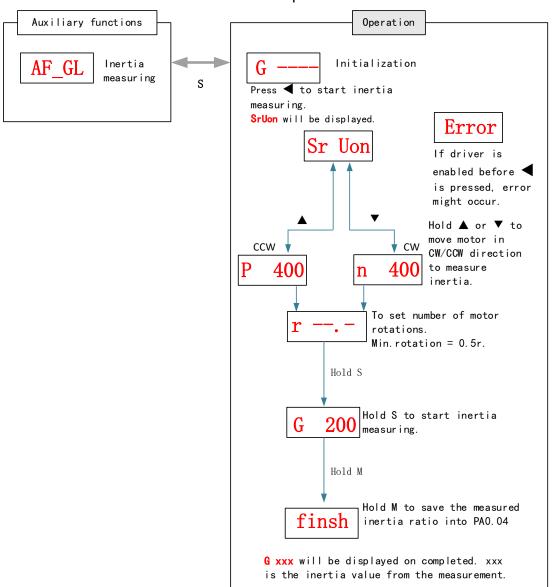


Reset to factory default using object dictionary

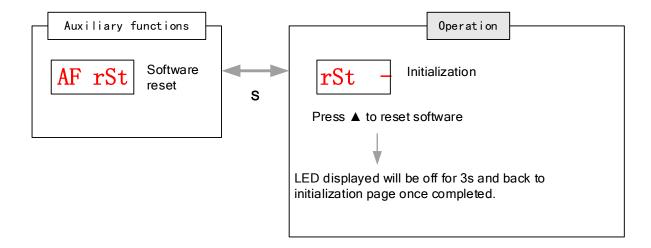
Object dictionary	Parameters to reset	Method
0x1011-01	All parameters	Controller can reset all parameters using 0x1011-01. If driver receives the data of 0x1011-01 as 0x64616f6c, all parameters will be reset to factory default and 1011-01=1 after saving.
0x1011-02	Communication parameters	Controller can reset communication parameters using 0x1011-02. If driver receives the data of 0x1011-02 as 0x64616f6c, communication parameters will be reset to factory default and 1011-02=1 after saving.
0x1011-03	402 parameters	Controller can reset 402 parameters using 0x1011-03. If driver receives the data of 0x1011-03 as 0x64616f6c, 402 parameters will be reset to factory default and 1011-03=1 after saving.
0x1011-04	Drivers' supplier parameters	Controller can reset drivers' supplier parameters using 0x1011-04. If driver receives the data of 0x1011-04 as 0x64616f6c, drivers' supplier parameters will be reset to factory default and 1011-04=1 after saving.

AF ACL Clear alarm

Alarm can be cleared using this auxiliary function but before that, the error needs to be solved and driver needs to be restarted.


For alarms that can be cleared using this function, please refer to table in Chapter 9.

AF_GL Inertia measuring


Please make sure to use suitable velocity and acceleration for the measuring process. Press S to exit and disable the driver once completed.

AF rSt Software reset

Software reset is used mainly on parameters modification that takes effect only after driver restart.

Chapter 5 Control Mode

5.1 EL7-EC motion control step-by-step

- A. EtherCAT master device sends "control word (6040h)" to initialize the drive.
 - B. Driver sends feedback "status word (6041h)" to the master device to indicate ready status (status word indication).
- C. Master device sends enable command (control word switch).
- D. The driver enables and sends feedback status to the master device.
- E. The master station sends homing command to home the axis. (Homing parameter and control word switch)
- F. Driver returns to home and sends feedback homed status to master device (status word indication)
 - G. The master station sends the position mode command for position movement (position motion parameters and control word switch) or sends the velocity command for velocity movement (velocity motion parameters and control word switch).
- H. When the drive is finished executing the command (position command), EL7-EC feedbacks the position/velocity to the master device for monitoring during the motion.
- I. The master device sends commands for the next motion.

5.2 CiA 402 State Machine

State machine switchover diagram Main Enable Control Circuit Power Disable Power on 0 Initialization starts 15 ON Fault OFF Disable Initialization completed 2 7 Ready (Initial parameters done) 3 6 14 Enable (Ready to enable) ON ON Disable 10 12 Quick stop Fault trigger 5 16 8 13 ON ON Enable Running 9 11

Figure 5.1 EL7-EC 402 State Machine switchover diagram

Table 5.1 Status description

Status	Description						
Initialization	Driver powered on, initialization starts; Holding brake activated;						
starts	Axis disabled						
Initialization done	Initialization done; Parameters initialize, faultless; Axis disabled.						
Ready	Parameter initialization done; Axis disabled.						
Enable	Servo driver is ready to be enabled.						
Running	Driver enabled, faultless						
Quick stop	Quick stop activated						
Fault triggered	Alarm not solved yet; Axis disabled.						
Alarm solved. Waiting to switch from 402 state machine							
	Initialization starts; Axis disabled.						

402 state machine switching is dependent on master device controlled servo driver control word (6040h)

CiA40	2 status switching	Control word 6040h	Status word 6041h Bit1-Bit9
0	Power on→ Initialization	Transit automatically	0x0000
1	Initialization→ Faultless	Transit automatically,	0x0250
		Enter 13 if fault occurs	
2	Faultless▶ Ready	0x0006	0x0231
3	Servo ready ⊁ Waiting to	0x0007	0x0233
	enable		
4	Waiting to enable-► Running	0x000F	0x0237
5	Running→ Waiting to enable	0x0007	0x0233
6	Waiting to enable→ Ready	0x0006	0x0231
7	Ready→ Faultless	0x0000	0x0250
8	Running → Ready	0x0006	0x0231
9	Running- → Faultless	0x0000	0x0250
10	Waiting to enable → Faultless	0x0000	0x0250
11	Running-→ Quick stop	0x0002	0x0217
12	Quick stop→ Faultless	Transit automatically	0x0250
13	Fault stop	Transit automatically	0x021F
14	Fault stop▶ Fault	Transit automatically	0x0218
15	Fault → Faultless	0x80	0x0250
16	Quick stop▶ Running	0x0F	0x0237

5.3 Driver Control Mode Setting

5.3.1 Supported control mode (6502h)

EL7-EC supports seven modes, as defined in 6502h.

Bit	31~10	9	8	7	6	5	4	3	2	1	0
Mode	Reserved	d CST	CSV	CSP	Reserved	НМ	Reserved	PT	PV	Reserved	PP
1:Supported	0	1	1	1	0	1	0	1	1	0	1
			D	escrip	tion		Abbr.				
			Profile	positi	on mode		PP				
		Profile velocity mode					PV				
		Profile Torque mode					PT				
		Homing mode					НМ				
		Cyclic synchronous position					CSP				
		mode									
		Cyclic synchronous velocity				CSV					
		mode									
		Cyclic synchronous torque mode				CST					

5.3.2 Operational mode setting (6060h) and Operational mode display (6061h)

The operation mode of the servo drive is set in 6060h. The operation mode of the servo drive is viewed in 6061h.

Bit	Description	Abbr.
1	Profile position mode	PP
3	Profile velocity mode	PV
4	Profile Torque mode	PT
6	Homing mode	НМ
8	Cyclic synchronous position mode	CSP
9	Cyclic synchronous velocity mode	CSV
10	Cyclic synchronous torque mode	CST

5.4 Common Functions for All Modes

5.4.1 Digital input setting and status display

Please refer to chapter 5 for more details on digital I/O input and polarity settings.60FDh object complies with IEC61800-200 standard input I/O status mapping object. 60FDh is

set according to function as the table below shows.

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Z signal	Reserved	Reserved	Reserved	Touch Probe 2	Touch Probe 1	BRAKE	INP/V-COIN /TLC
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
E-STOP	Reserved	Reserved	Reserved	Reserved	Reserved	DI14	DI13
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
DI12	DI11	DI10	DI9	DI8	DI7	DI6	DI5
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DI4	DI3	DI2	DI1	Reserved	HOME	POT	NOT

5.4.2 Digital output setting and control operation method

In addition to the internal operation of the servo system, EL7-EC also provides a function for the master device to operate digital I/O output of the servo driver.

If I/O output function is set up as master device control, master device can control servo driver digital I/O output through 60FEh object

Bit Sub-index	31~21	21	20	19	18	17	16	15~0
01h	Reserved	D06	D05	D04	D03	D02	D01	
OIII		valid	valid	valid	valid	valid	valid	Dagamirad
02h		D06	D05	D04	D03	D02	D01	Reserved
		enabled	enabled	enabled	enabled	enabled	enabled	

5.4.3 Motor Rotational Direction

Rotational direction is defined in 607Eh.

T						
Mode	!	Set value				
Position	PP	0: Rotate in the same direction as the position command				
	НМ	· ·				
Mode	CSP	128: Rotate in the opposite direction to the position command				
Velocity	PV	0: Rotate in the same direction as the position command				
Mode	CSV	64: Rotate in the opposite direction to the position command				
Torque	PT	0: Rotate in the same direction as the position command				
Mode CST		32: Rotate in the opposite direction to the position command				
ALL 0: Rotate in the same direction as the position command		0: Rotate in the same direction as the position command				
Modes		224: Rotate in the opposite direction to the position command				

5.4.4 Stop Settings

EL7-EC provides quick stop function. Stopping is different under different modes. Controlled by using object dictionary 605A.

Index	Label	Quick stop	option o	code	Mode		F	
605Ah	Range	0~7			Default	2	Unit	-
003A11	Structure	VAR	Туре	INT16	Mapping	-	Access	RW

Motor stops when quick stop option code is given.

PP, CSP, CSV, PV

- 0 : To stop motor through PA5.06. Status: Switch on disable, axis disabled.
- 1 : Motor decelerates and stops through 6084. Status: Switch on disable, axis disabled.
- 2 : Motor decelerates and stops through 6085. Status: Switch on disable, axis disabled.
- 3 : Motor decelerates and stops through 60C6. Status: Switch on disable, axis disabled.
- 5 : Motor decelerates and stops through 6084. Status: Quick stop
- 6 : Motor decelerates and stops through 6085. Status: Quick stop
- 7 : Motor decelerates and stops through 60C6. Status: Quick stop

нм

- 0 : To stop motor through PA5.06. Status: Switch on disable, axis disabled.
- 1 : Motor decelerates and stops through 609A. Status: Switch on disable, axis disabled.
- 2 : Motor decelerates and stops through 6085. Status: Switch on disable, axis disabled.
- 3 : Motor decelerates and stops through 60C6. Status: Switch on disable, axis disabled.
- 5 : Motor decelerates and stops through 609A. Status: Quick stop
- 6 : Motor decelerates and stops through 6085. Status: Quick stop
- 7 : Motor decelerates and stops through 60C6. Status: Quick stop

When 402 state machine is disabled, the motor will stop freely.

When bit8(Halt) of 6040h is 1, the motor will stop with deceleration set in 6083h/6084h.

5.4.5 Position mode - Electronic Gear

EL7-EC position mode consists of cyclic synchronous position mode (CSP), protocol position mode (PP) and homing mode (HM), only in these three modes is the electronic gear valid.

Electronic gear ratio range is 0.001~8000(23-bit encoder), 0.001~to 125(17 bit encoder), otherwise ErA00 might occur if over range (the warning is not saved, after modification to a reasonable range, alarm on operational panel will automatically disappear, but the 402 state will still be in the "error" state, write 0x80 into 6040h).

Method 1:

Electronic gear ratio setting is defined by 608Fh (Position encoder resolution). 6091h (Gear ratio), 6092h (Feed constant) to change the motor position. Only valid under pre-operational mode.

608Fh (Position encoder resolution) is the resolution of the encoder, which is read

internally without additional setting. 6092h_01 represents the number of pulses that can be set for each revolution of the motor. 6091h_01/6091h_02 is real-time update effective.

Electronic gear subdivision method can be determined by modifying 6092h_01 (Feed constant)

- 1. If 6092h_01 (Feed constant) is not equal to 608Fh (Position Encoder resolution), then:

 Electronic gear ratio = encoder resolution / 6092h_01
- 2. If 6092h_01(Feed constant) is equal to 608Fh(Position encoder resolution), then:

 Electronic gear ratio = 6091_01/6092h_01

 Electronic gear ratio range is 0.001~8000(23 bit encoder), 0.001~125(17 bit encoder)

Command pulse count per motor revolution needs to be \geq Encoder Pulse Count per Revolution / 8000.

EL7 series comes with motors with 17-bit and 23-bit encoder. Pulse count per revolution for 17-bit encoder = 131072; for 23-bit encoder = 8388608. From the condition above, the command pulse count per motor revolution for 17-bit encoder should be \geq 17; for 23-bit encoder \geq 1049.

Method 2:

Electronic gear can be set through Pr0.08. If Pr0.08 \neq 0, Pr0.08 is valid. If Pr0.08 = 0, object dictionary 6092-01 is valid.

Note: when the setting value exceeds this range, the error will be reported and automatically reset to the default value. The default values of 6091_01, 6091_02 and 6092_01 are 1, 1 and 10000.

5.4.6 Position Limits

The hardware limit is valid in all operational modes, and the software limit is valid only in the absolute operational mode of cyclic synchronous position mode (CSP) and profile position mode (PP)

The limit of the software is defined by 607Dh. The maximum position in the negative direction is defined in 607d-01h and the maximum position in the positive direction is defined in 607d-02h, the unit is consistent with the command unit.

The setting of object dictionary 0x5012-04 not only affects the homing offset of 607C, but also affects the software limit, 607D needs to be modified before the operational state

5012-04		Actual Positive Position Limit	Actual Magative Decition Limit		
Bit2	Bit3	Actual Positive Position Limit	Actual Negative Position Limit		
0	0	607D-02 + 607C	607D-01 + 607C		

0	1	607D-02 - 607C	607D-01 - 607C
1	Х	607D-02	607D-01

EL7-EC Software position limits valid conditions:

- 1. It can only be set in the pre-operational state of ESM. It is recommended to configure it by SDO when the system starts.
- 2. Only in the absolute mode of CSP and PP, in CSP mode, it is recommended to use the software limit function of the master station to achieve the fastest limit performance.
- 3. The incremental encoder motor is not effective until the homing process completed.
- 4. The setting rule is 607d-01h < 607d-02h, that is, the negative position limit value is less than the positive position limit value.

5.4.7 Control Word

Bit definition of Control Word 6040h.

Bit	15~11	10~9	8	7	6~4	3	2	1	0
Definitio			Halt	Fault	Related	Operation	Quick	Voltage	Switch
n	-	_	пан	reset	to modes	enable	stop	output	on

		Bit7 a	nd Bit0 to B	it3		6040	402 State
Command	7: Fault reset	3: Operation enable	2: Quick stop	1: Voltage output	0: Start	Value	machine *1)
Power off	0	×	1	1	0	0006h	2;6;8
Switch on	0	0	1	1	1	0007h	3*
Switch on	0	1	1	1	1	000Fh	3**
No voltage output	0	×	×	0	×	0000h	7;9;10;12
Quick stop	0	×	0	1	×	0002h	7;10;11
Operation enable	0	0	1	1	1	0007h	5
enable	0	1	1	1	1	000Fh	4;16
Fault reset	Rising edge	×	×	×	×	0080h	15

[×] is not affected by this bit state

The definition of bit 8 and bit 6~4 in different operation modes are shown in the following table

^{*} indicates that this transition is performed in the device start state

^{**} indicates that it has no effect on the start state and remains in the start state

^{*1)} The state machine switch corresponds to figure 7.1

		Operation Mode										
Bit	Profile Position (PP)	Profile Velocity (PV)	Profile Torque (PT)	Homing (HM)	Cyclic Sync Position (CSP)	Cyclic Sync Velocity (CSV)	Cyclic Sync Torque (CST)					
8	Stop with deceleration	Stop with deceleration	Stop with decelerati	Stop with deceleration	-	-	-					
6	Absolute/ Increment	-	-	-	-	-	-					
5	Immediatel y trigger	-	-	-	-	-	-					
4	New Position	1	-	Start	- 1	-	-					

5.4.7 Status Word

Bit definition of Status Word 6041h.

Bit	Definition		
15~14	Reserved		
13~12	Related to modes		
11	Position limit valid		
10	Position arrival		
9	Distance		
8	Related to modes		
7	Reserved		
6	Not switch on		
5	Quick stop		
4	Voltage output		
3	Fault		
2	Operation enable		
1	Switch on		
0	Ready to switch on		

Bit 11 is valid when the software or hardware limit is in effect.

The combination of bit 6 and bit 3~0 represents the device state shown in following table

Combination of bit 6 and bit 3~0	Description
****,***,*0**,0000	Not ready to switch on
****,***,*1**,0000	Switch on disabled
****,***,*01*,0001	Ready to switch on
××××,×××,×01×,0011	Switch on
××××,×××,×01×,0111	Operation enabled
××××,×××,×00×,0111	Quick stop active
,,*0**,1111	Fault reaction active
****,***,*0**,1000	Fault

[×] is not affected by this bit state

The definition of bit 8 and bit 13~12 in different operation modes are shown in the following table

	Operation Mode										
Bit	Profile Position (PP)	Profile Velocity (PV)	Profile Torque (PT)	Homing (HM)	Cyclic Sync Position (CSP)	Cyclic Sync Velocity (CSV)	Cyclic Sync Torque (CST)				
13	Position error is too large	1	-	Homing Process error	-	1	1				
12	-	Velocity is 0	-	Homing Process completed	Following valid	Following valid	Following valid				
8	Abnormal stop	-	-	Abnormal stop	Abnormal stop	-	-				

5.4.8 Synchronous cycle time setting

The default synchronous cycle time range of EL7-EC series is 250us – 10ms. Min value: 125us; Max value: 20ms. Please make sure the values set is the multiplier of 250us.

5.4.9 Driver Enabling

This section describes how to use control words 6040h/ status word 6041h command switching/status determination forEL7-EC controlled motor.

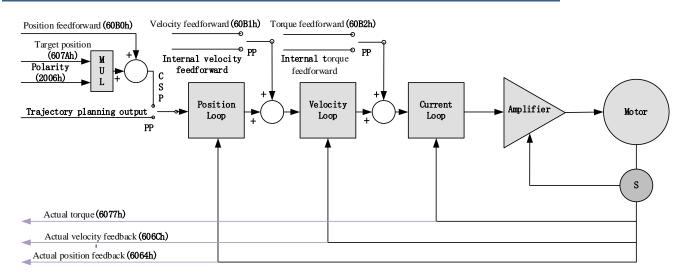
Steps:

- 1: Write 0 to the control word 6040h, and then AND 0x250 by bit, whether it is equal to 0x250
- 2: Write 6 to the control word 6040h, and then AND 0x231 by bit, whether it is equal to 0x231
- 3: Write 7 to the control word 6040h, and then AND 0x233 by bit, whether it is equal to 0x233
- 4: Write 15 to the control word 6040h, and then AND 0x237 by bit, whether it is equal to 0x237

5.5 Position Mode (CSP、PP、HM)

5.5.1 Common Functions of Position Mode

Sub-		Label	Label Access		Mode			
inaex	Index	Label	Access	PD0	PP	CSP	НМ	
6040	0	Control word	RW	RxPD0	Yes	Yes	Yes	
6072	0	Max torque	RW	RxPD0	Yes	Yes	Yes	
607A	0	Target position	RW	RxPD0	Yes	Yes	/	
607D	1	Min. software limit	RW	RxPD0	Yes	Yes	/	
	2	Max. software limit	RW	RxPD0	Yes	Yes	/	
607F	0	Maximum protocol velocity	RW	RxPD0	Yes	/	Yes	
6080	0	Maximum motor velocity	RW	RxPD0	Yes	Yes	Yes	
6081	0	Profile velocity	RW	RxPD0	Yes	/	/	
6083	0	Profile acceleration	RW	RxPD0	Yes	/	/	
6084	0	Profile deceleration	RW	RxPD0	Yes	/	/	
60C5	0	Protocol maximum acceleration	RW	RxPD0	Yes	/	Yes	
60C6	0	Protocol maximum deceleration	RW	RxPD0	Yes	/	Yes	


Index	Sub-	Labal	A	DDO		Mode	
Index	Index	Label	Access	PD0	PP	CSP	НМ
6041	0	Status word	R0	TxPD0	Yes	Yes	Yes
6062	0	Position command	RO	TxPD0	Yes	Yes	Yes
6063	0	Actual internal position	RO	TxPD0	Yes	Yes	Yes
6064	0	Actual position feedback	RO	TxPD0	Yes	Yes	Yes

	_				1	1	1
6065	0	Position	RW	RxPD0	Yes	Yes	/
		deviation					
		window					
6066	0	Position	RW	RxPD0	Yes	Yes	/
		deviation					
		detection					
		time					
606C	0	Velocity feedback	R0	TxPD0	Yes	Yes	Yes
6074	0	Internal	R0	TxPD0	Yes	Yes	Yes
		command					
		torque					
6076	0	Rated torque	R0	TxPD0	Yes	Yes	Yes
6077	0	Actual	R0	TxPD0	Yes	Yes	Yes
		torque					
60F4	0	Actual	RO	TxPD0	Yes	Yes	Yes
		following error					
60FA	0	Position	RO	TxPD0	Yes	Yes	Yes
		loop		···· 2 0			
		velocity					
		_					
		output					
60FC	0	Internal command	R0	TxPD0	Yes	Yes	Yes
		position					
L	<u> </u>	Position	L		L	L	

5.5.2 Cyclic Synchronous Position Mode (CSP)

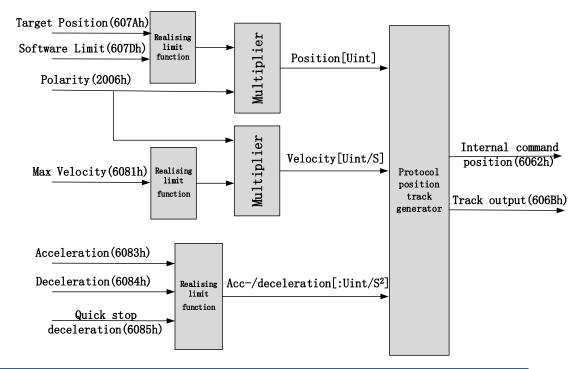
CSP Block Diagram

Related Objects

Basic object

PDO	Index+Sub-Index	Label	Data Type	Access	Unit	Notes
	6040-00h	Control word	U16	RW	_	Required
	607A-00h	Target position	132	RW	Uint	Required
(RXPD0)	60B0-00h	Position feedforward	132	RW	Uint	Optional
(KAPDO)	60B1-00h	Velocity feedforward	132	RW	Uint /S	Optional
	60B2-00h	Torque feedforward	116	RW	0.1%	Optional
	6041-00h	Status word	U16	RO	_	Required
	6064-00h	Actual feedback position	132	RO	Uint	Required
(TXPDO)	606C-00h	Actual feedback velocity	132	RO	Uint /S	Optional
	60F4-00h	Actual following error	132	R0	Uint	Optional
	6077-00h	Actual torque	116	R0	0.1%	Optional

Extended object


Index+Sub-Index	Label	Data Type	Access	Unit
603F-00h	Error code	U16	R0	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	R0	_
6062-00h	Position demand value	132	RO	Uint
606B-00h	Internal command speed	132	R0	Uint
607D-01h	Min. software limit	132	R0	Uint
607D-02h	Max. software limit	132	R0	Uint
605A-00h	Quick stop option code	116	RW	_
6085-00h	Emergency stop	U32	RW	Uint /S
0003-0011	deceleration	032	IV.VV	UIII /3
608F-01h	Encoder resolution	U32	R0	Р
608F-02h	Motor turns	U32	R0	_
6091-01h	Electronic gear ratio	U32	RW	
0071-0111	numerator	032	I VV	_
6091-02h	Electronic gear ratio	U32	RW	
0071-0211	denominator	032	17.44	_
6092-01h	Number of pulses per rotation	U32	RW	_
6092-02h	Number of physical axis turns	U32	R0	_

5.5.3 Protocol Position Mode (PP)

Under non-synchronous mode, master device is responsible for only sending parameters and control command; After receiving enable command from master device, servo driver will plan motion route according to parameters. Under non-synchronous mode, motor motion between each axes are asynchronous.

From the perspective of servo driver functions, the difference between PP and CSP mode is that PP mode requires track generator function from L7EC

Related Parameters

Basic object

PDO	Index+Sub-Index	Label	Data Type	Access	Unit	Notes
	6040-00h	Control word	U16	RW	1	Required
	607A-00h	Target position	132	RW	Uint	Required
(RXPD0)	6081-00h	Max. velocity	U32	RW	Uint	Required
	4002 00b	Acceleration	132	RW	Uint	Optional
	6083-00h		132	ITAN	/S	
	6041-00h	Status word	U16	R0	1	Required
	603F-00h	Error code	U16	R0		Optional
	6064-00h	Actual position feedback	132	R0	Uint	Required
(TXPD0)	606C-00h	Actual velocity feedback	132	RO	Uint	Optional
	0000-0011		132	RU	/S	
	60F4-00h	Actual following error	132	R0	Uint	Optional
	6077-00h	Actual torque	l16	R0	0.1%	Optional

Extended object

Index+Sub-Index	Label	Data Type	Access	Unit
603F-00h	Error code	U16	R0	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	R0	_
6062-00h	Position demand value	132	RO	Uint
606B-00h	Internal command speed	132	R0	Uint
607D-01h	Min. software limit	132	R0	Uint
607D-02h	Max. software limit	132	R0	Uint
605A-00h	Quick stop option code	116	RW	_
6085-00h	Emergency stop	U32	DW	Uint /S
0003-0011	deceleration	032	RW	Unit /3
608F-01h	Encoder resolution	U32	R0	Р
608F-02h	Motor turns	U32	R0	_
6091-01h	Electronic gear ratio	U32	RW	
6071-0111	numerator	032	KVV	_
6091-02h	Electronic gear ratio	U32	RW	
0071-0211	denominator	032	17.00	_
6092-01h	Number of pulses per rotation	U32	RW	_
6092-02h	Number of physical axis turns	U32	R0	_

Control and status words under PP mode

Control word bits 4~6 definition under PP mode

Bit	Value	Definition
4 (New position)	0->1	Latest target position(607Ah)、Profile velocity (6081h)、Acc-/deceleration(6083h/6084h) Starts
5	0	Trigger new position command once current one is completed.
(Instant trigger)	1	Interrupted current position command and trigger new position command
6(Absolute/	0	Set target position(607Ah)as absolute position
relative)	1	Set target position(607Ah) as relative position

5 motion structures under PP mode

Control words bit 5	0	1
Accelerates/ constant velocity toward target position	$0 \xrightarrow{\text{V}} \text{A} \xrightarrow{\text{B}} \text{C} \xrightarrow{\text{C}} \text{t}$	$0 \xrightarrow{X} A B C t$
Decelerates towards target position	0 A B C	$0 \xrightarrow{\text{V}} A \xrightarrow{\text{B}} C \Rightarrow t$
Target position in inversed direction	0 A B	0 A C t

A: Command switching time from master device

B: Arrival time before target position renewal

C: Arrival time after target position renewal

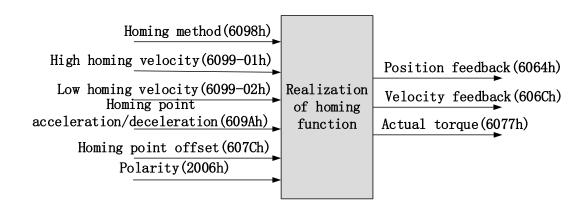
Thick line: Motion before command changed Thin line: Motion after command changed

Status word bits 12-15, 10, 8 definition under PP mode

Bit	Value	Definition
8(Abnormal	0	Normal motion
Stoppage)	1	Abnormal stoppage triggered, motor stopped *1)
10(Arrived at	0	Motion not completed
position)	1	Target position reached
12(Name a sitian)	0	Current motion completed/interruptible, able to execute new position command *2)
12(New position)	1	Current motion not completed/interruptible, unable to execute new position command
1//Mation	0	Motion parameters valid, necessary parameters all not set to 0.
14(Motion Parameter = 0)	1	Parameter = 0 under current motion. One of 3 parameters, Profile velocity (6081h), acceleration (6083h) and deceleration (6084h) = 0.
15/Trigger\	0	Current motion incomplete/uninterruptable, new target position cannot be renewed. *3)
15 (Trigger)	1	Current motion completed/interruptible, new target position can be renewed.

- *1) Bit 8 abnormal stoppage usually valid when hardware limit, deceleration stoppage and quick stop are triggered.
- *2) Bit 12 under control word(6040h)bit 5 valid and bit 4 invalid, motion interruptible.
- *3) Bit 15 and bit 12 have inversed logic under PP mode.

Application: Realization of relative position motion


Step 1: 6060h = 1, determine if 6061h =1. Servo driver is now under PP mode.

Step 2: Write motion parameters: Target position 607Ah, Profile velocity 6081h, acceleration 6083h, deceleration 6084h

Step 3: Enable servo driver and switch bit 6 and 4 to realize relative position motion.

5.5.4 Homing mode (HM)

EL7-EC servo system supports every other homing method except for method 36. Output/input parameters of L7EC are as shown below.

Related Parameters

Basic object

PD0	Index+Sub-Index	Name	Data Type	Access	Unit	Notes
	6040-00h	Control word	U16	RW	_	Required
	6098-00h	Homing mode	18	RW	Uint	Optional
(RXPD0)	6099-01h	High homing velocity	U32	RW	Uint/S	Optional
	6099-02h	Law baming valacity	U32	DW	Uint	Optional
	6099-UZN	Low homing velocity	032	RW	/S	

	609A-00h	Homing point acceleration	U32	RW	Uint /S²	Optional
	607C-00h	Homing point offset	132	RW	Uint	Optional
	60-00h	Status word	U16	R0	_	Required
	603F-00h	Error code	U16	R0		Optional
	6064-00h	Actual position feedback	132	R0	Uint	Optional
(TXPD0)	606C-00h	Actual velocity feedback	132	R0	Uint /S	Optional
	60F4-00h	Actual following error	132	R0	Uint	Optional
	6077-00h	Actual torque	116	RO	0.1%	Optional

Extended object

Index+Sub-Index	Label	Data Type	Access	Unit
603F-00h	Error code	U16	RO	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	RO	_
6062-00h	Position demand value	132	RO	Uint
606B-00h	Internal command speed	132	R0	Uint
608F-01h	Encoder resolution I32 R0		R0	Uint
608F-02h	Motor revolution	132	R0	Uint
6091-01h	Electronic gear ratio numerator	U32	RW	
6091-02h	Electronic gear ratio denominator	U32	RW	_
6092-01h	Number of pulses per rotation	U32	RW	_
6092-02h	Number of physical axis turns	U32	R0	_

Control and status words under HM mode

Control word bit 4 definition under HM mode

Bit	Value	Definition		
4(Homing motion starts/stops)	0>1	Homing motion starts		
	1 ->0	Homing motion stops, motor		
Stat (5/5(0p5)		stops		

Status word bits 12-15, 10, 8 definition under PP mode

Bit	Value	Definition
8(Abnormal	0	Normal motion
Stoppage)	1	Abnormal stoppage triggered, motor stops *1)
10(Arrived a	. 0	Motion not completed
position)	1	Target position reached

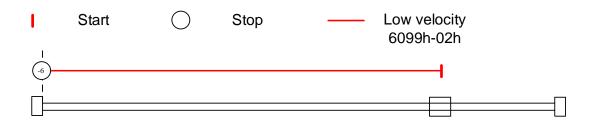
12/11	0	Homing not done	
12(Homing done)	1	Homing done, valid after reaching position(bit 10) *2)	
	0	Motion parameters valid, necessary parameters all not	
		set to 0.	
14(Motion		Parameter = 0 under current motion. One of 4	
Parameter = 0)	1	parameters, Homing mode (6098h), high homing	
		velocity(6099h-01), low homing velocity (6099h-02) and	
		homing point acc-/deceleration (609Ah) = 0.	
15(Trigger)	0	Homing triggered/completed *3)	
	1	Homing triggers	

^{*1)} Bit 8 abnormal stoppage usually valid when hardware limit, deceleration stoppage and quick stop are triggered.

Incorrect position triggering conditions

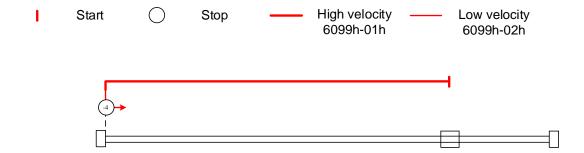
Triggering condition	Remarks	
Absolute encoder homing	Control words 6040h bit 4 from 0 to 1	
2 limit switch signals detected	Positive and negative limit switches detected during homing	
Negative limit valid when positive limit in used	Negative limit valid under 2,7-10,23-26 homing modes	
Positive limit valid when negative limit in used	Positive limit valid under 1,11-14,27-30 homing modes	
Limit switch valid when not in used	Limit switch valid under 3,4,19,20 homing modes	
Limit switch/homing signal valid when	Limit switch and homing sensor valid under	
only z-signal in used	33,34 homing modes	

^{*2)} Determine if homing is done, determine if bit 10/12 is occupied.

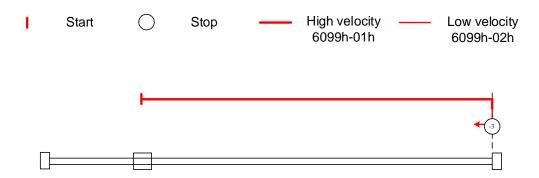

^{*3)} Use to indicate if homing is able to trigger or already triggered.

Homing mode

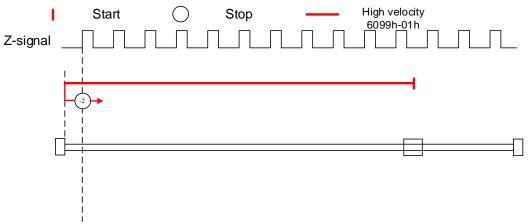
Torque limiting mode

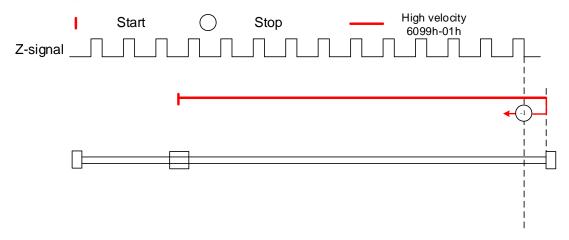

Mode-6: Search for homing point in **negative direction** at **low velocity**. Stop after torque reaches the value set in PA5.39 and homing done signal is delivered.

Mode -5: Search for homing point in **positive direction** at **low velocity**. Stop after torque reaches the value set in PA5.39 and homing done signal is delivered.



Mode -4: Search for homing point in negative direction at high velocity. Move in positive direction after torque reaches the value set in PA5.39, stops when torque is gone. Homing done signal delivers after the time value set in PA5.37


Mode -3: Search for homing point in positive direction at high velocity. Move in negative direction after torque reaches the value set in PA5.39, stops when torque is gone. Homing done signal delivers after the time value set in PA5.37



Torque limiting + Z-signal mode

Mode -2: Search for homing point in negative direction at high velocity. Move in positive direction after torque reaches the value set in Pr5.39, stops when torque is gone with the first Z-signal.

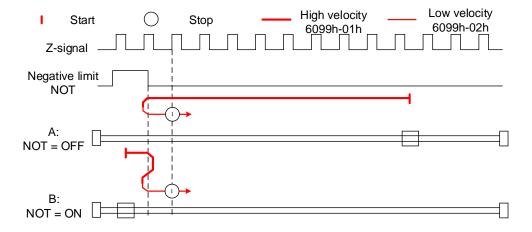
Mode -1: Search for homing point in **positive direction** at **high velocity**. Move in **negative direction** after torque reaches the value set in Pr5.39, stops when torque is gone with the **first Z-signal**.

Limit switch signal + Z-signal mode

Mode 1:

Diagram A: Negative limit switch = OFF

- 1. Move in negative direction at high velocity until negative limit switch valid.
- 2. Move in **positive direction** at **low velocity** and stops **after negative limit switch** and **first encoder Z-signal valid**


Diagram B: Negative limit switch = ON

- 1. Start to move at **negative limit switch position** in **positive direction** at **high velocity** until **negative limit switch invalid**.
- 2. Move in negative direction at high velocity until negative limit switch valid.

3. Move in **positive direction** at **low velocity** and stops **after negative limit switch** and **first encoder Z-signal valid**

If the positive limit signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

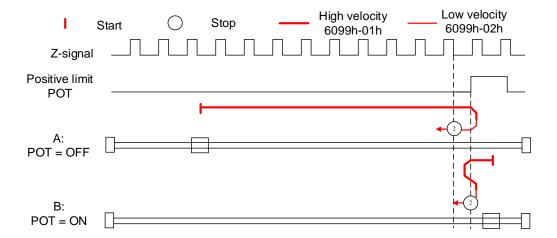

Mode 2:

Diagram A: Positive limit switch = OFF

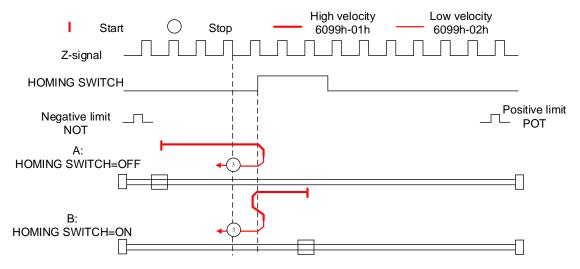
- 1. Move in positive direction at high velocity until positive limit switch valid.
- 2. Move in **negative direction** at **low velocity** and stops **after positive limit switch** and **first encoder Z-signal valid**

Diagram B: Positive limit switch = ON

- 1. Start to move at **positive limit switch position** in **negative direction** at **high velocity** until **positive limit switch invalid**.
- 2. Move in positive direction at high velocity until positive limit switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after positive limit switch** and **first encoder Z-signal valid**

Homing switch signal + Z-signal mode

Mode 3:


Diagram A: Homing switch = OFF

- 1. Move in positive direction at high velocity until homing switch valid.
- 2. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

Diagram B: Homing switch = ON

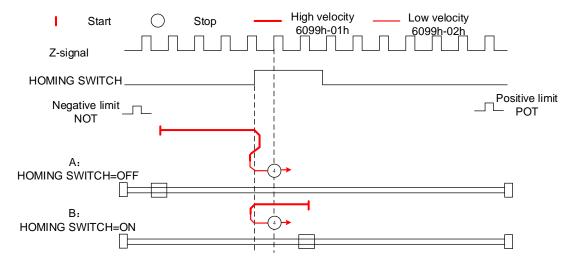
- 1. Start to move at homing switch position in negative direction at high velocity until after homing switch.
- 2. Move in positive direction at high velocity until homing switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

If the positive/negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

Mode 4:

Diagram A: Homing switch = OFF

- 1. Move in positive direction at high velocity until homing switch valid.
- 2. Move in negative direction at high velocity until homing switch invalid.
- 3. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**


Diagram B: Homing switch = ON

- 1. Start to move at homing switch position in negative direction at high velocity until after homing switch.
- 2. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**

If the positive/negative limit switch signal is valid during the homing process, the status

word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

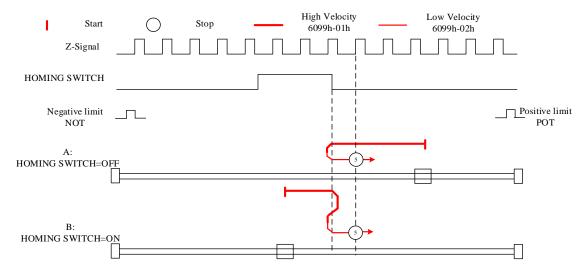

Mode 5:

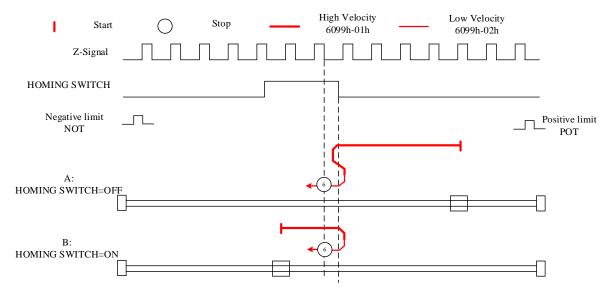
Diagram A: Homing switch = OFF

- 1. Move in negative direction at high velocity until homing switch valid.
- 2. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

Diagram B: Homing switch = ON

- 1. Start to move at homing switch position in positive direction at high velocity until after homing switch.
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

Mode 6:


Diagram A: Homing switch = OFF

- 1. Move in negative direction at high velocity until homing switch valid.
- 2. Move in positive direction at high velocity until homing switch invalid.
- 3. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**

Diagram B: Homing switch = ON

- 1. Start to move at homing switch position in positive direction at high velocity until after homing switch.
- 2. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**

If the positive/negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

Limit switch signal + homing switch signal + Z-signal mode

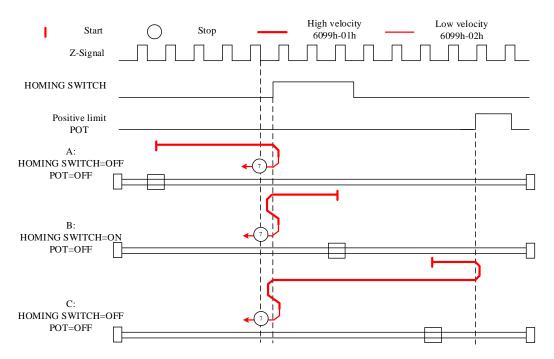
Mode 7

Diagram A: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until homing switch valid.
- 2. Move in **negative direction** at **low velocity** and stops after **homing switch** and **first encoder Z-signal valid**.

Diagram B: Homing switch = ON, positive limit switch = OFF

- 1. Start to move at homing switch position in negative direction at high velocity until after homing switch.
- 2. Move in positive direction at high velocity until homing switch valid.
- 3. Move in negative direction at low velocity and stops after homing switch and first



encoder Z-signal valid

Diagram C: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until positive limit switch valid.
- 2. Move in negative direction at high velocity until after homing switch.
- 3. Move in positive direction at high velocity until homing switch valid.
- 4. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z signal valid**

If the negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

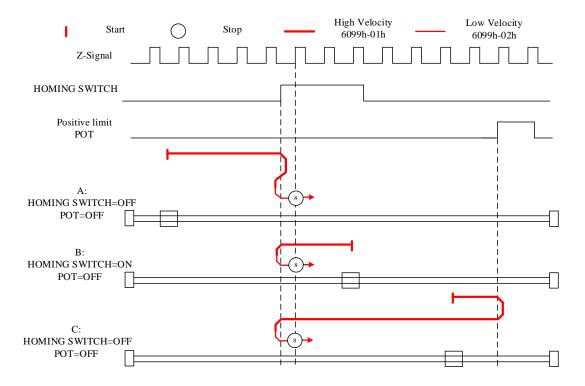
Mode 8

Diagram A: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until homing switch valid.
- 2. Move in negative direction at high velocity until after homing switch.
- 3. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

Diagram B: Homing switch = ON, positive limit switch = OFF

- 1. Start to move at homing switch position in negative direction at high velocity until after homing switch.
- 2. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**


Diagram C: Homing switch & positive limit switch = OFF

1. Move in positive direction at high velocity until positive limit switch valid.

- 2. Move in negative direction at high velocity until after homing switch.
- 3. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

If the negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

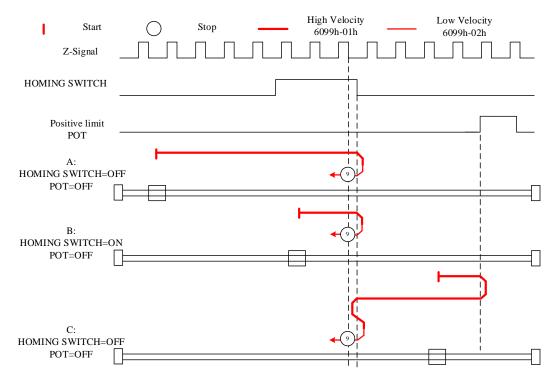
Mode 9

Diagram A: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until after homing switch.
- 2. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

Diagram B: Homing switch = ON, positive limit switch = OFF

- 1. Start to move at homing switch position in positive direction at high velocity until homing switch invalid.
- 2. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**


Diagram C: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until positive limit switch valid.
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in positive direction at high velocity until after homing switch.
- 4. Move in negative direction at low velocity and stops after homing switch valid and first

encoder Z signal valid

If the negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

Mode 10

Diagram A: Homing switch & positive limit switch = OFF

- 1. Move in positive direction at high velocity until after homing switch.
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**.

Diagram B: Homing switch = ON, positive limit switch = OFF

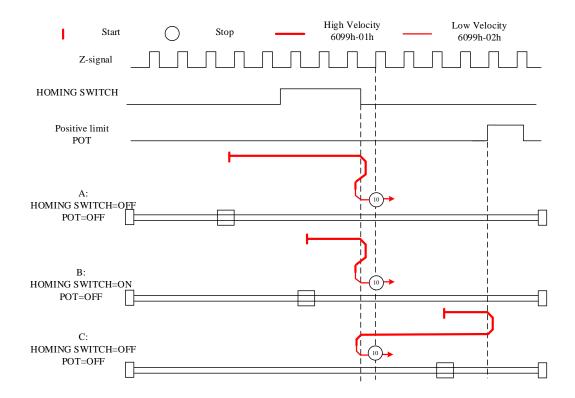

- 1. Start to move at homing switch position in positive direction at high velocity until after homing switch.
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

Diagram C: Homing switch & positive limit switch = OFF

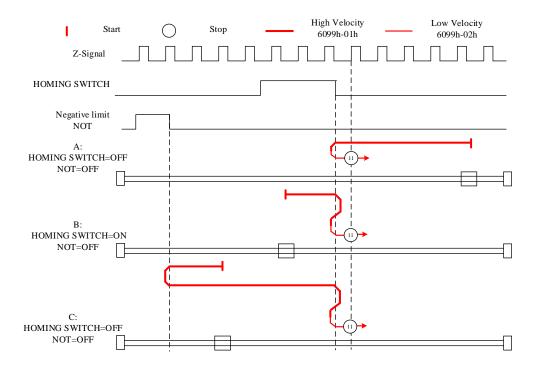
- 1. Move in positive direction at high velocity until positive limit switch valid.
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z signal valid**

If the negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

Mode 11

Diagram A: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until homing switch valid.
- 2. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**


Diagram B: Homing switch = ON, negative limit switch = OFF

- 1. Start to move at homing switch position in positive direction at high velocity until after homing switch.
- 2. Move in negative direction at high velocity until homing switch valid.
- 3. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**

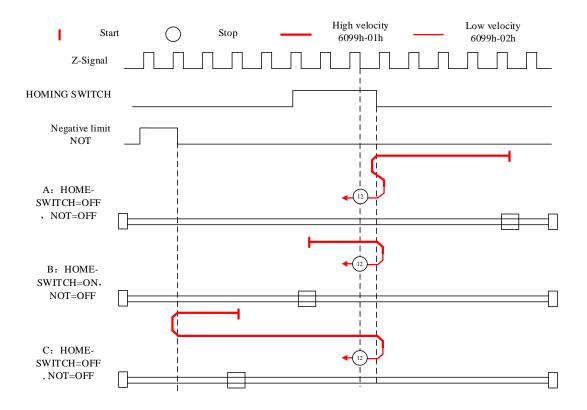
Diagram C: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until the negative limit switch valid.
- 2. Move in positive direction at high velocity until homing switch invalid.
- 3. Move in negative direction at high velocity until homing switch valid.
- 4. Move in **positive direction** at **low velocity** and stops **after homing switch** and **first encoder Z signal valid**

Mode 12

Diagram A: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until homing switch valid.
- 2. Move in positive direction at high velocity until after homing switch.
- 3. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**


Diagram B: Homing switch = ON, negative limit switch = OFF

- 1. Move at **homing switch position** in **negative direction** at **high velocity** until **after homing switch**.
- 2. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

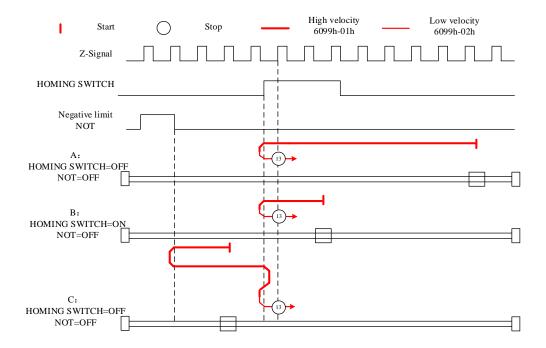
Diagram C: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until negative limit switch valid.
- 2. Move in positive direction at high velocity until after homing switch.
- 3. Move in **negative direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

Mode 13

Diagram A: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until after homing switch.
- 2. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.


Diagram B: Homing switch = ON, negative limit switch = OFF

- 1. Start to move at homing switch position in negative direction at high velocity until after homing switch.
- 2. Move in positive direction at low velocity and stops after homing switch valid and first encoder Z-signal valid.

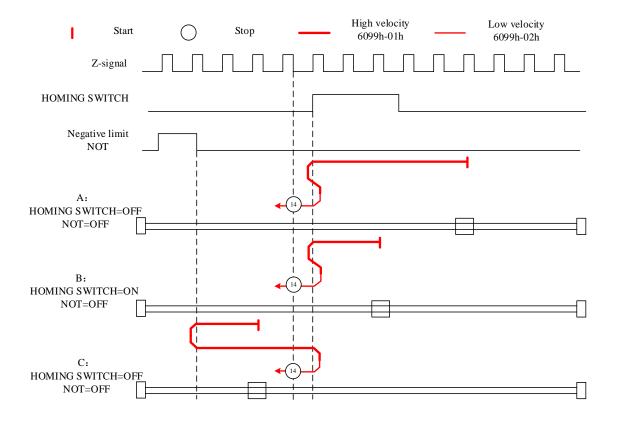
Diagram C: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until negative limit switch valid.
- 2. Move in positive direction at high velocity until homing switch valid.
- 3. Move in negative direction at high velocity until after homing switch.
- 4. Move in **positive direction** at **low velocity** and stops after **homing switch valid** and **first encoder Z-signal valid**.

Mode 14

Diagram A: Homing switch & negative limit switch = OFF

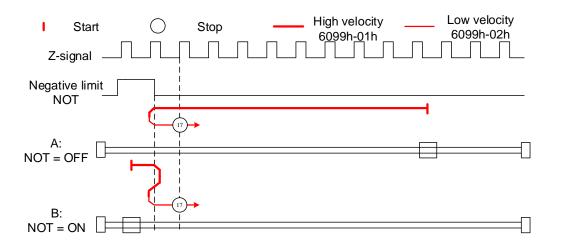
- 1. Move in negative direction at high velocity until after homing switch.
- 2. Move in positive direction at high velocity until homing switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid**.


Diagram B: Homing switch = ON, negative limit switch = OFF

- 1. Start to move at homing switch position in negative direction at high velocity until homing switch invalid.
- 2. Move in positive direction until homing switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z signal valid.**

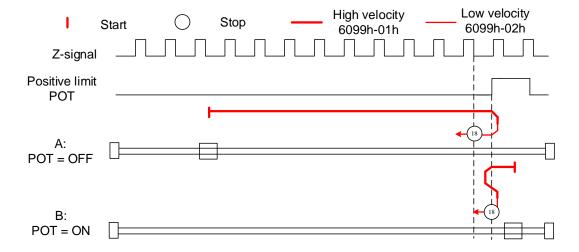
Diagram C: Homing switch & negative limit switch = OFF

- 1. Move in negative direction at high velocity until negative limit switch valid.
- 2. Move in positive direction at high velocity until homing switch valid.
- 3. Move in **negative direction** at **low velocity** and stops **after homing switch** and **first encoder Z-signal valid.**

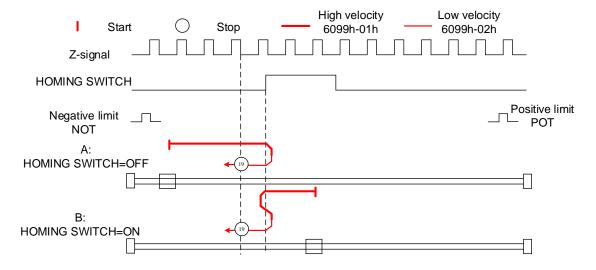


Limit switch signal triggering detection mode

Mode 17:

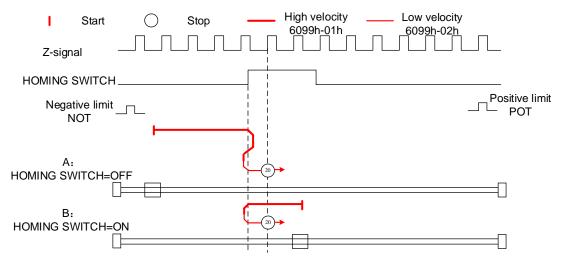

This mode is similar to mode 1. Only difference is that homing point detection is not through Z-signal but through triggering of negative limit switch signal

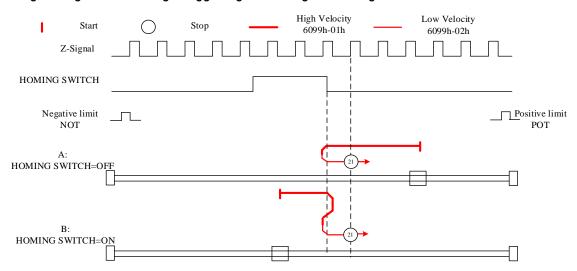
Mode 18:


This mode is similar to mode 2. Only difference is that homing point detection is not through Z-signal but through switching of positive limit switch signal

Homing switch signal triggering detection mode

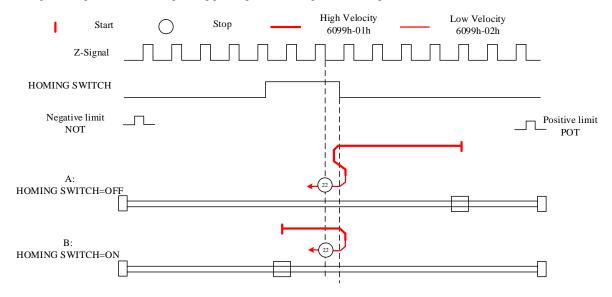
Mode 19:

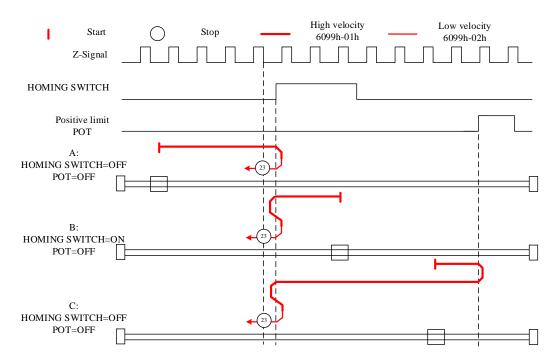

This mode is similar to mode 3. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal


Mode 20:

This mode is similar to mode 4. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

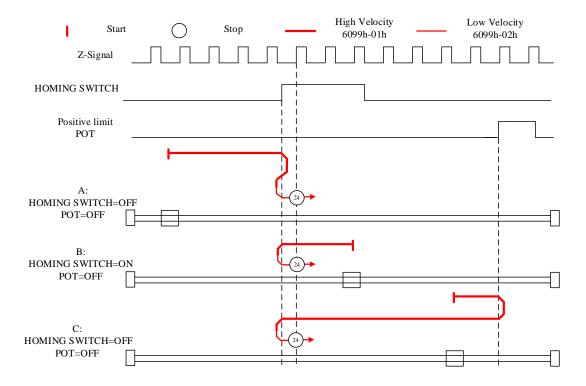
Mode 21:

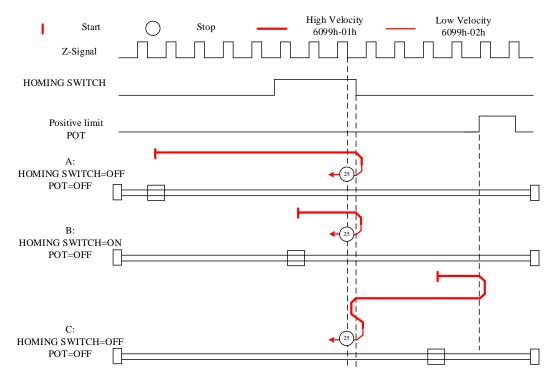

This mode is similar to mode 5. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal.


Mode 22:

This mode is similar to mode 6. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal.

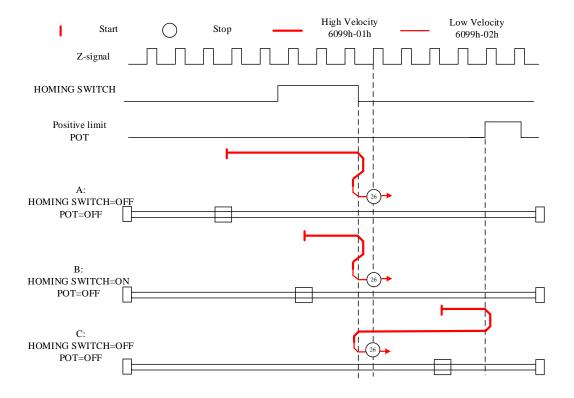
Mode 23:

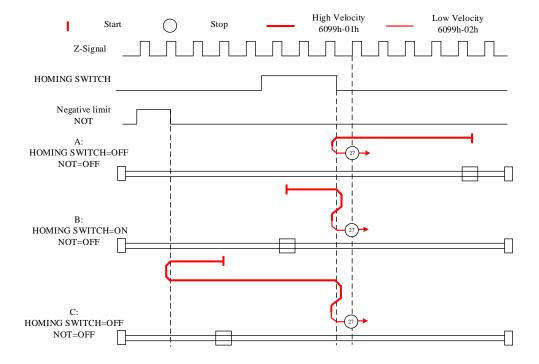

This mode is similar to mode 7. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal.


Mode 24:

This mode is similar to mode 8. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal.

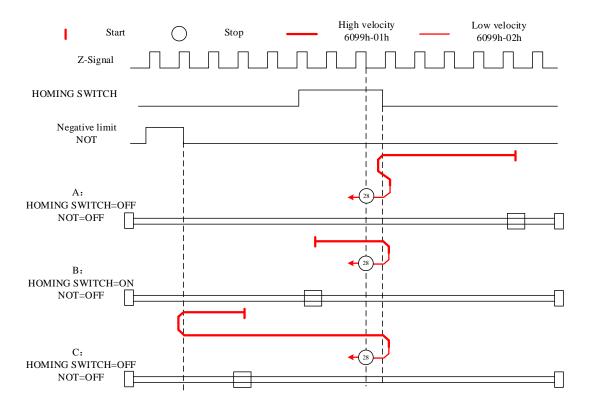
Mode 25:

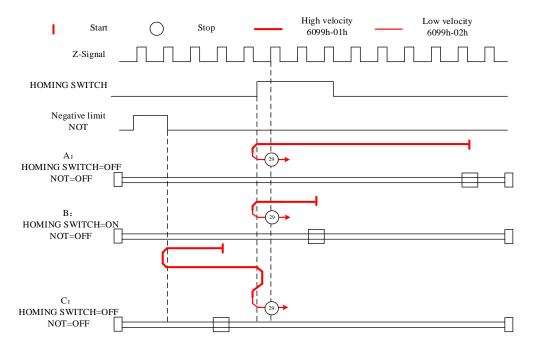

This mode is similar to mode 9. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal


Mode 26:

This mode is similar to mode 10. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

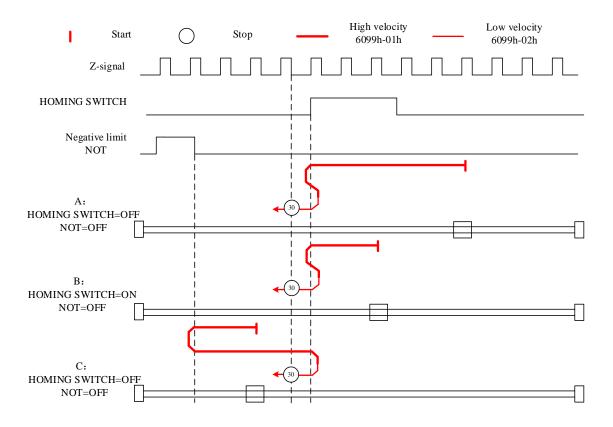
Mode 27:


This mode is similar to mode 11. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

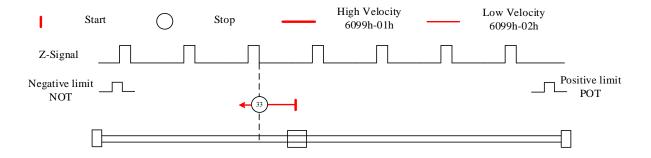

Mode 28:

This mode is similar to mode 12. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

Mode 29:

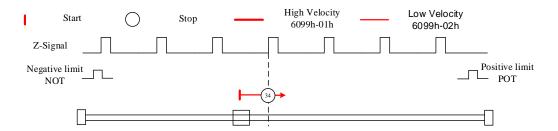

This mode is similar to mode 13. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

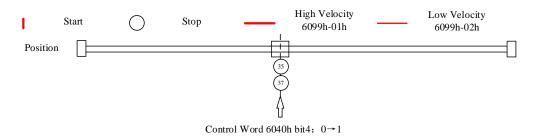
Mode 30:


This mode is similar to mode 14. Only difference is that homing point detection is not through Z-signal but through triggering of homing switch signal

Other modes

Mode 33:


The motor starts to move in **negative direction** and stops when the **Z-signal is valid**. If the positive/negative limit switch signal or homing switch is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.


Mode 34:

The motor starts to move in **positive direction** and stops when the **Z-signal is valid**. If the positive/negative limit switch signal or homing switch is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating homing error and the motor will stop immediately.

Mode 35/37:

Set the current position as homing point. Using this mode, motor doesn't have to be enabled. Set control word 6040h bit 4 from 0 to 1.

Application: Realization of homing motion

Step 1: 6060h = 6, determine if 6061h = 6. Servo driver is now under HM mode.

Step 2: Write motion parameters: Homing method 6098h, Homing velocity

6099h-01/6099h-02 and acceleration/deceleration 609Ah.

Step 3: Enable servo driver and switch bit 4 from 0 to 1 to start homing motion.

5.6 Velocity Control Mode (CSV、PV)

5.6.1 Common Functions of Velocity Control

lm day.	Sub	" Name	A	DDO	Mode	
Index	Index	Name	Access	PD0	CSV	PV
6040	0	Control word	RW	RxPD0	Yes	Yes
6072	0	Max torque	RW	RxPD0	Yes	Yes
6080	0	Maximum motor velocity	RW	RxPD0	Yes	Yes
60B1	0	Velocity feedforward (Restricted by 6080)	RW	RxPD0	Yes	Yes

60B2	0	Torque feedforward	RW	RxPD0	Yes	Yes
60FF	0	Target velocity (Restricted by 6080)	RW	RxPD0	Yes	Yes

la dese	Index Sub	Name	A	DD0	Mode	
index	Index	Name	Access	PD0	CSV	PV
6041	0	Status word	R0	TxPD0	Yes	Yes
6063	0	Actual internal position	R0	TxPD0	Yes	Yes
6064	0	Actual feedback position	R0	TxPD0	Yes	Yes
606B	0	Internal command velocity	R0	TxPD0	Yes	Yes
606C	0	Actual feedback velocity	R0	TxPD0	Yes	Yes
6074	0	Internal torque command	R0	TxPD0	Yes	Yes
6076	0	Rated torque	R0	TxPD0	Yes	Yes
6077	0	Actual torque	R0	TxPD0	Yes	Yes

5.6.2 Cyclic Synchronous Velocity Mode (CSV)

CSV Block Diagram CSV Velocity feedforward (60B1h) Torque feedforward (60B2h) Target velocity (60FFh) Internal torque feeforward Polarity С (2060h+2062h) S Velocity Torque Trajectory planning output Amplifer Motor loop loop S Actual torque (6077h) Actual velocity feedback(606Ch) Actual position feedback(6064h)

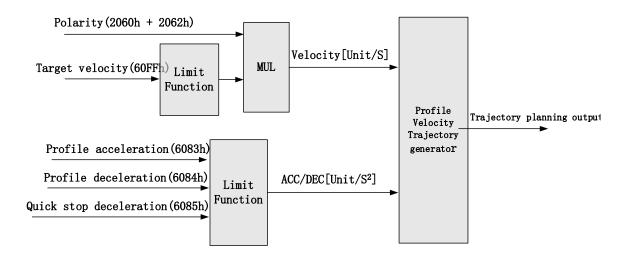
Related Objects

Basic object

PDO	Index+Sub-Index	Name	Data Type	Access	Unit	Remarks
	6040-00h	Control word	U16	RW	_	Required
(DVDDO)	60FF-00h	Target velocity	132	RW	Uint	Required
(RXPD0)	60B1-00h	Velocity feedforward	132	RW	Uint /S	Optional
	60B2-00h	Torque feedforward	116	RW	0.1%	Optional
	6041-00h	Status word	U16	R0	_	Required
	6064-00h	Actual position feedback	132	R0	Uint	Optional
(TXPDO)	606C-00h	Actual speed feedback	132	R0	Uint /S	Optional
	60F4-00h	Actual following error	132	R0	Uint	Optional
	6077-00h	Actual torque	116	R0	0.1%	Optional

Extended object

Index+Sub-Index	Name	Data Type	Access	Unit
603F-00h	Error code	U16	R0	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	RO	_
606B-00h	Internal command velocity	132	RO	Uint
605A-00h	Quick stop option	116	RW	_
6085-00h	Quick stop deceleration	U32	RW	Uint /S


5.6.3 Profile Velocity Mode (PV)

In asynchronous motion mode, master device is only responsible for sending motion parameters and control commands.EL7-EC servo drive will conduct trajectory planning according to the motion parameters sent by master device after receiving the motion start command from the master device. In asynchronous motion mode, the motion between each axes is asynchronous.

PV Block Diagram

The difference between PV and CSV mode is that PV needs EL7-EC to have the function of trajectory generator. The input and output structure of the trajectory generator is shown in figure 7.8

Related Objects

Basic object

PDO	Index+Sub-Index	Name	Data Type	Access	Unit	Notes
	6040-00h	Control word	U16	RW	_	Required
(RXPD0)	60FF-00h	Target velocity	132	RW	Uint	Required
	6083-00h	Acceleration	132	RW	Uint /S	Optional
	6041-00h	Status word	U16	R0	_	Required
	6064-00h	Position feedback	132	R0	Uint	Optional
(TVDDO)	606C-00h	Velocity feedback	132	RO	Uint /S	Optional
(TXPD0)	60F4-00h	Actual following error	132	RO	Uint	Optional
	6077-00h	Actual torque	l16	R0	0.1%	Optional

Extended object

Index+Sub-Index	Name	Data Type	Access	Unit
603F-00h	Error code	U16	R0	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	R0	_
605A-00h	Quick stop option	116	RW	_
6084-00h	Deceleration	U32	RW	Uint /S
6085-00h	Quick stop deceleration	U32	RW	Uint /S

Control Word and Status Word for Profile Velocity Mode

The bit6~4 of control words (6040h) associated with the control mode in PV mode are invalid. The motion in PV mode can be triggered as long as the motion parameters (target velocity (60FFh) ACC/DEC (6083h/6084h)) are given after the axis is enabled.

Table7. Bit15~12、10、8 of Status word (6041h) for Profile Velocity Mode

Bit (Label)	Value	Details
8	0	Quick stop invalid
(Quick stop)	1	Quick stop valid
10	0	Velocity not yet reached
(Velocity reached)	1	Velocity reached
10	0	It's not zero speed. It's moving.
12 (Zero speed)	1	Zero speed or it's going to slow down to zero speed *1)

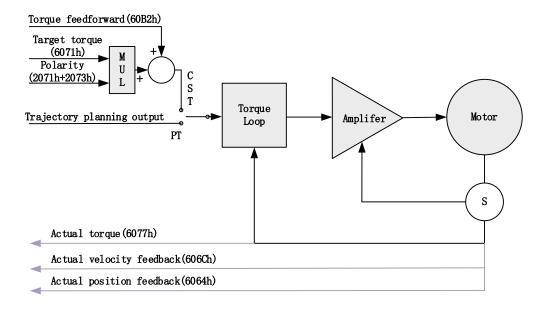
^{*1)} Zero speed of bit 12 is generally effective when deceleration stop and hardware limit valid.

Application: Realization of profile velocity motion

Step 1: 6060h = 3, determine if 6061h = 3. Servo driver is now under PV mode. Step 2: Write motion parameters: Target velocity 60FFh, acceleration 6083h and deceleration 6084h.

5.7 Torque Mode (CST、PT)

5.7.1 Common Functions of Torque Mode


Index	Sub	Label	A	PDO	Mode	
index	Index	Labet	Access	PDU	CST	PT
6040	0	Control word	RW	RxPD0	Yes	Yes
6071	0	Target torque	RW	RxPD0	Yes	Yes
6072	0	Max torque	RW	RxPD0	Yes	Yes
6080	0	Maximum motor speed	RW	RxPD0	Yes	Yes
6087	0	Torque change rate	RW	RxPD0	Yes	Yes
60B2	0	Torque feedforward	RW	RxPD0	Yes	Yes

ld	Sub	Labal	A	DDO	Мс	ode
Index	Index	Label	Access	PD0	CST	PT
6041	0	Status word	R0	TxPD0	Yes	Yes
6063	0	Actual internal position	RO	TxPD0	Yes	Yes
6064	0	Actual feedback position	RO	TxPD0	Yes	Yes
606C	0	Actual feedback velocity	RO	TxPD0	Yes	Yes
6074	0	Internal torque command	RO	TxPD0	Yes	Yes
6075	0	Rated current	R0	No	Yes	Yes
6076	0	Rated torque	R0	No	Yes	Yes
6077	0	Actual torque	R0	TxPD0	Yes	Yes
6079	0	Bus voltage	R0	TxPD0	Yes	Yes

5.7.2 Cyclic Synchronous Torque Mode (CST)

CST Block Diagram

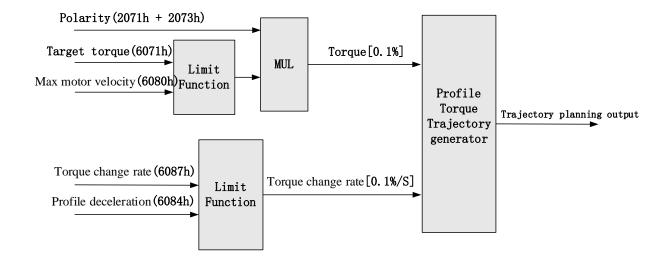
Related Objects

Basic object

PDO	Index+Sub-Index	Name	Data Type	Access	Unit	Remarks
(DVDDO)	6040-00h	Control word	U16	RW	_	Required
(RXPD0)	6071-00h	Target torque	116	RW	Uint	Required

	6087-00h	Torque feed-forward	U32	RW	0.1%/S	Optional
	6041-00h	Status word	U16	R0	_	Required
	6064-00h	Actual position feedback	132	R0	Uint	Optional
(TXPD0)	606C-00h	Actual velocity feedback	132	R0	Uint /S	Optional
	60F4-00h	Actual following error	132	R0	Uint	Optional
	6077-00h	Actual torque	116	R0	0.1%	Required

Extended object


Index+Sub-Index	Name	Data Type	Access	Unit
603F-00h	Error code	U16	RO	-
6060-00h	Operation mode	18	RW	-
6061-00h	Displayed operation mode	18	RO	-
6074-00h	Internal command torque	116	RO	0.1%
605A-00h	Quick stop option	116	RW	-
6080-00h	0-00h Maximum motor velocity		RW	Uint /S
6085-00h	Quick stop deceleration	U32	RW	Uint /S
60B1-00h	Velocity feedforward	132	RW	Uint /S
2077-00h Velocity limit		116	RW	RPM

5.7.3 Profile Torque Mode (PT)

In asynchronous motion mode, master device is only responsible for sending motion parameters and control commands.EL7-EC servo drive will conduct trajectory planning according to the motion parameters sent by master device after receiving the motion start command from the master device. In asynchronous motion mode, the motion between each axes is asynchronous.

PT Block Diagram

Related Objects

Basic object

PDO	Index+Sub-Index	Label	Data Type	Access	Unit	Notes
(RXPDO)	6040-00h	Control word	U16	RW	_	Required
	6071-00h	Target torque	116	RW	0.1%	Required
	6087-00h	Torque change rate	U32	RW	0.1%/S	Optional
(TXPDO)	6041-00h	Status word	U16	R0	_	Required
	6064-00h	Actual feedback position value	132	RO	Uint	Optional
	606C-00h	Actual feedback speed value	132	RO	Uint /S	Optional
	60F4-00h	Actual following error	132	R0	Uint	Optional
	6077-00h	Actual torque	116	R0	0.1%	Optional

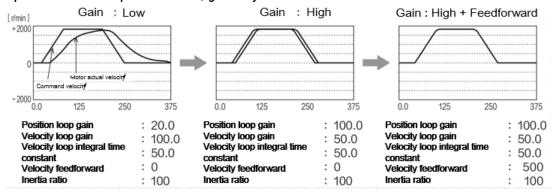
Extended object

Index+Sub-Index	Label	Data Type	Access	Unit
603F-00h	Error code	U16	R0	_
6060-00h	Operation mode	18	RW	_
6061-00h	Displayed operation mode	18	RO	_
6074-00h	Internal command torque	116	RO	0.1%
6080-00h	Maximum motor velocity	U32	RW	Uint /S
605A-00h	Quick stop option	116	RW	_
6085-00h	Quick stop deceleration	U32	RW	Uint /S

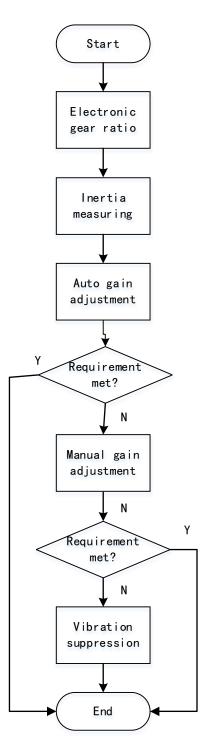
2077-00h	Velocity limit	116	RW	RPM

Application: Realization of profile torque motion

Step 1: 6060h = 4, determine if 6061h = 4. Servo driver is now under PT mode.


Step 2: Write motion parameters: Target torque 6071h, Torque change rate 6087h, and Max. velocity limit 6080h

Chapter 6 Application


6.1 Gain Adjustment

In order for servo driver to execute commands from master device without delay and to optimize machine performance, gain adjustment has to be done.

Servo driver gain adjustment is done in combination with a few other parameters (Inertia ratio, Position loop gain, Velocity loop gain and Filters settings). These parameters will have an effect on each other so it always advisable to tune each parameter according in order to achieve optimal machine performance. Please refer to the steps below

Steps	Functions	Explanation
	Online	Motor moves with command from controller, servo driver will
		automatically calculate load-inertia ratio
Inertia		
measuring	Offline	Using servo driver inertia determining function, servo driver
		can automatically calculate load-inertia ratio
Auto gain	Auto gain	Real time determining of mechanical load, gain value is set
adjustment	adjustment	accordingly.

Manual gain adjustment	Basic gain	On top of auto gain adjustment, manually adjust related parameters so that machine can have better responsiveness and following				
	Command pulse filter	Set filter for position, velocity and torque command pulse.				
	Gain	Enable feedforward function to improve following behaviour				
	feedforward					
Vibration	Mechanical	Using notch filtering function to suppress mechanical				
suppression	resonance	resonance.				

6.2 Inertia measuring function

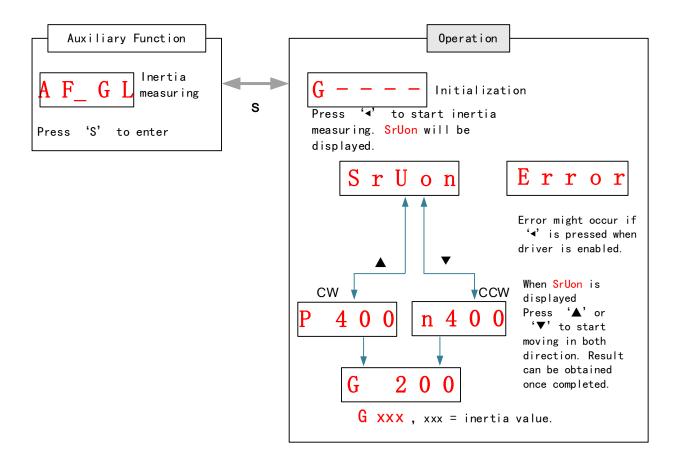
Inertia ratio = Total mechanical load rotational inertia / Electronic gear rotational inertia

Inertia ratio is an important parameter. Setting a suitable value can help with the precise tuning of the servo system. Inertia ratio can be set manually and also be determined automatically through servo driver

6.2.1 Online inertia determination

Enable motor using controller. Let motor run at above 400rpm, make sure there are acceleration, constant velocity and deceleration phase during the whole run. Cycle through 2-3 times to calculate load-inertia ratio. Result can be found on the front panel d16 or through Motion Studio system monitoring page. Enter the calculated value into Pr0.04 and save.

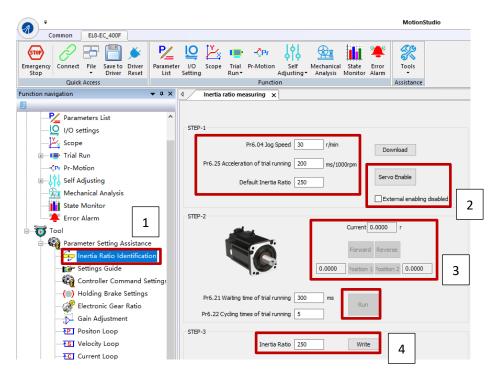
6.2.2 Offline inertia determination


Can be achieved through driver front panel or on Motion Studio.

Please make sure:

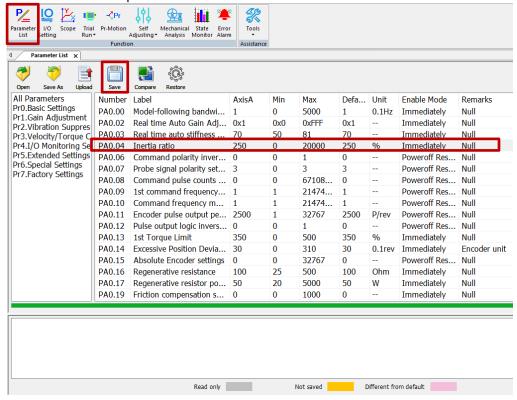
- 1. Servo driver is disabled.
- 2. Axis is within safe and allowed range and limit switch is not triggered prevent axis from over travelling.

6.2.3 Auxiliary function to determine inertia on front panel


Steps:

- 1. Set the trial run velocity **PA6.04**. Value set shouldn't be too large, please keep it at around **400 r/min**.
- 2. Enter AF_GL for auxiliary function Inertia ratio determination into front panel
- 3. Press S once to enter. "G---" will be displayed on the front panel.
- 4、 Press once to display "StUon"
- 5. Press ▲ or ▼ once to start to calculate the inertia.
- 6. After the calculation is done, G xxx will be displayed and xxx is the value of inertia calculated.
- 7. Write the corresponding value into Pr0.04. Please refer to for parameter saving on servo driver.

6.2.4 Inertia measuring using Motion Studio


- 1. Start Motion Studio and maneuver to inertia ratio identification page under performance tuning. Set trial run velocity Pr6.04 and acc-/deceleration time PA6.25, click on 'Upload' to upload parameters to servo driver.
- 2. Tick "Prohibit external enabling" and click on "servo on".
- 3. Click and hold "CCW" to start the motor. Current position will show motor cycles of revolution. Click on POS 1 to save current position as starting point. Click and hold "CW" to start the motor again. Click on POS 2 to save current position as ending point.
- 4. Set the waiting time between each cycle in Pr6.21 and no. of cycles in Pr6.22. Click on 'Run' and motor will run according to the parameters set.

5. After the calculation is done, inertia ratio will be calculated automatically and click on 'write' to enter the calculated value into Pr0.04.

6. Click on "Parameter List" to enter parameters management to check or modify Pr0.04. Then, click on "Save" to save parameters to driver.

Please take note:

- 1. Trial run velocity and distance should be optimal to prevent any axis from bumping into objects.
- 2. It is recommended to move only in 1 direction for vertically mounted axis. Take precaution before moving the axis.
- 3. For applications with higher frictional drag, please set a minimal travel distance.

	Label	Inertia ratio	Mode		F		
PA0.04	Range	0~20000	Default	250	Unit	%	
	Activation	Immediate			Index	2004h	
	PA0.04=(load inertia/motor rotational inertia)×100% Set inertia ratio according to actual load inertia. When both are uniform, actual motor velocity loop responsiveness and gain settings will be consistent. If inertia ratio is greater than actual value, velocity loop gain settings will be higher and vice versa. For motor with high inertia, PA0.04 can be left unfilled but optimal setting of PA0.04 could improve system performance.						

6.3 Auto gain adjustment

This function will measure real time mechanical properties and set gain values in accordance to mechanical stiffness. Can be used in any control mode

Conditions to implement						
Control	Please refer to PA0.02 for detailed explanations. Auto gain adjustment is					
mode	different for each control mode.					
	Servo driver needs to be enabled					
Other	• Set up input signals such as deviation counter clearing and command input; Torque limit and other motion control parameters to enable motor to move normally without obstacles.					

Under certain conditions, external factors might affect automatic gain adjustment functions. If the conditions as listed exist or unfavorable, please disable the automatic gain adjustment function.

	Affecting conditions					
Load inertia	If inertia is less than 3 times or over 20 times of rotor inertia.					
Load mertia	Changes in load inertia					
Land	Very low mechanical stiffness					
Load	If gear backlash is a non-linear property					
	Velocity less than 100r/min or continuously in low velocity mode					
	• Acc-/deceleration to 2000r/min within 1s. 。					
Motion	 Acc-/deceleration torque lower than eccentric load, frictional torque. 					
	· Velocity < 100r/min, acc-/deceleration to 2000r/min within 1s but not					
	longer than 50ms					

To enable automatic gain adjustment:

- 1. Disable the servo driver.
- 2. Set PA0.02 = 0x01/0x11 or 0x02/0x12. Then, set PA0.03
- 3. Servo enabled. Run motion as normal to start measuring load properties.

Related parameters will be automatically set.

- 4. Increase motor responsiveness by increasing PA0.03. Please check if there is any vibration before setting PA0.03 to max. value.
 - 5. Save the parameters.

Please take note:

- Please stop the motor before modifying any parameter. PA0.02 only takes effect after saving modified parameter values into EEPROM and restarting the driver.
- After enabling the servo driver for the first time or when increasing PA0.03,

mechanical noise or vibration might occur for the first run, it is normal. If it persists, please set PA0.03 to lower value.

Parameters that change in accordance to real time gain adjustment

No.	Parameters	Label	Remarks
1	PA1.00	1 st position loop gain	
2	PA1.01	1 st velocity loop gain	
3	PA1.02	1st velocity integral time	
		constant	
4	PA1.03	1st velocity detection filter	
5	PA1.04	1st torque filter	When stiffness setting is valid,
6	PA1.05	2 nd position loop gain	parameters will be updated to
7	PA1.06	2 nd velocity loop gain	match stiffness value
8	PA1.07	2 nd velocity integral time	
		constant	
9	PA1.08	2 nd velocity detection	
		filter	
10	PA1.09	2 nd torque filter	

If auto gain adjustment is valid, the parameters listed above can't be manually modified. Only when PA0.02 = 0x00 or 0x10, can the gain related parameters be modified manually.

Gain related parameters that don't change with the real time gain adjustment

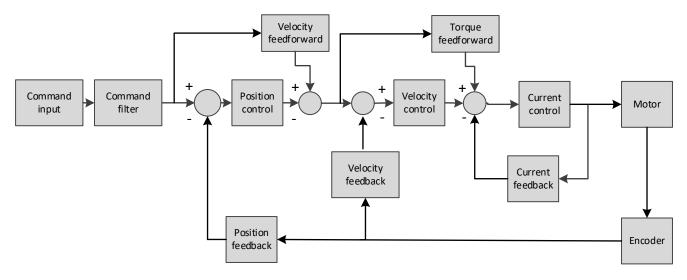
No.	Parameter	Label
1	PA1.10	Velocity feedforward gain constant
2	PA1.11	Velocity feedforward filter time constant
3	PA1.12	Torque feedforward gain
4	PA1.13	Torque feedforward filter time constant
5	PA1.15	Position control gain switching mode
6	PA1.17	Position control switching level
7	PA1.18	Position control switching hysteresis
18	PA1.19	Position gain switching time

PA0.02	Label	Real time Auto Gain Adjusting	Mode		F	
	Range	0x0~0xFFF	Default	0x001	Unit	_
	Activation	Immediate			Index	2002h

Set up the mode of the real time auto gain adjusting.

Data bits	Category	Settings	Application
		motion charact to select mode mode 2 when	otion setting mode, which can be selected according to the teristics or setting requirements. Generally, it is recommended a 1 with good generality when there is no special requirement, rapid positioning is needed If mode 1 and mode 2 cannot meet hts, please choose mode 0.
		0:Manual	PA0.03 invalid. Gain value must be adjusted manually and accordingly.
0x00_	Motion setting mode	1:Standard	PA0.03 valid. Quick gain adjusting can be achieved by changing PA0.03 stiffness value. Gain switching is not used in this mode, suitable for applications with requirements for stability.
		2:Positioning	PA0.03 valid. Quick gain adjusting can be achieved by changing PA0.03 stiffness value. This mode is suitable for applications requiring quick positioning. Not recommended for load mounted vertical to ground, or please compensate for the load using PA6.07
		Used to select mechanical str	the load type, choose according to load-inertia ratio and ucture.
	Load	0: Rigid structure	This mode prioritizes system responsiveness. Use this mode when there is a relatively rigid structure with low load inertia. Typical application including directly connected high-precision gearbox, lead screw, gears, etc.
0x0_0 type setting	, ,	1:High inertia	For applications with higher load inertia (10 times or above), gain settings take into account both machine stability and responsiveness. Not recommended to set stiffness above 15 for high load inertia.
		2: Flexible structure	This mode prioritizes system stability. Use this mode when there is low rigidity structure with high load inertia. Typical applications included belts and chains.
0x_00	Reserved		

The setting type combination is a hexadecimal standard, as follows:


Setting type combination	Application type
0X000	Rigid structure + Manual
0X001	Rigid structure +Standard
0X002	Rigid structure +Positioning
0X010	High inertia + Manual
0X011	High inertia + Standard
0X012	High inertia + Positioning
0X020	Flexible structure + Manual
0X021	Flexible structure +Standard
0X022	Flexible structure +Positioning

	Label	Real time auto stiffness adjusting	Mode		F			
PA0.03	Range	50 ~ 81	Default	70	Unit	_		
	Activation	Immediate			Index	2003h		
Valid when F	Valid when PA0.03 = 1,2							
	Low ──► Mechanical stiffness ←─── High Low ──► Servo gain ←─── High							
	81.80·····	70.69.68	•••••	5	1.50			
	Low — Responsiveness							
 Lower values ensure better system responsiveness and mechanical stiffness but machine vibration might occur, please set accordingly. Please stop the motor before doing any changes to the stiffness settings. When PA0.02 = 0x010, please set stiffness level to around 65. 								

6.4 Manual gain adjustment

Due to limitation of load conditions, automatic gain adjustment might not achieve expected performance. Control can be improved through manual gain adjustment The servo system is made up of 3 control loops. From outer to inner: position loop, velocity loop, current loop as shown in the diagram below.

Inner control loop demands higher responsiveness. In order to avoid system instability, please tune in accordance to this principle. Current loop gain usually satisfies the responsiveness demand without tuning. When gain adjustment is done under position control mode, in order to keep the system stabile, position and velocity loop gain have to be increased at the same time to make sure the responsiveness of the position loop is lower than velocity loop.

Steps to tuning (Position and velocity control)

For servo gain, if any one of the parameters is changed, please modify other gain related parameters accordingly. Make sure to the change at around 5% and follow the rules as below.

- 1) Increase responsiveness
 - a) Reduce torque command filter time
 - b) Increase velocity loop gain
 - c) Decrease velocity loop integral time
 - d) Increase position loop gain
- 2) Decrease responsiveness, prevent vibration and over shoot
 - a) Reduce position loop gain
 - b) Increase velocity loop integral time
 - c) Reduce velocity loop gain
 - d) Increase torque filter time

	Label	1 st position loop gain	Mode	PP	НМ	CSP
PA1.00	Range	0~30000	Default	320	Unit	0.1/s
	Activation	Immediate			Index	2100h

Higher position loop gain value improves the responsiveness of the servo driver and lessens the positioning time.

Position loop gain value shouldn't exceed responsiveness of the mechanical system and take in consideration velocity loop gain, if not it might cause vibration, mechanical noise and overtravel.

As velocity loop gain is based on position loop gain, please set both values accordingly. Recommended range: $1.2 \le PA1.00/PA1.01 \le 1.8$

	Label	1 st Integral Time Constant of Velocity Loop	Mode	de F		
PA1.02	Range	1~10000	Default	310	Unit	0.1ms
	Activation	Immediate			Index	2102h

If auto gain adjusting function is not enabled, PA1.02 is activated.

The lower the set value, the closer the lag error at stop to 0 but might cause vibration. If the value set is overly large, overshoot, delay of positioning time duration and lowered responsiveness might occur.

Set 10000 to deactivate PA1.02.

Recommended range: 50000≤PA1.01xPA1.02≤150000

For example: Velocity loop gain PA1.01=500(0.1Hz), which is 50Hz. Integral time constant of velocity loop should be 100(0.1ms)≤PA1.02≤300(0.1ms)

	Label	1 st Torque Filter Time Constant	Mode	F		
PA1.04	Range	0~2500	Default	126	Unit	0.01ms
	Activation	Immediate			Index	2104h

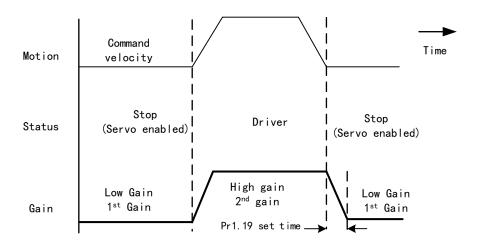
To set torque command low-pass filter, add a filter delay time constant to torque command and filter out the high frequencies in the command.

Often used to reduce or eliminate some noise or vibration during motor operation, but it will reduce the responsiveness of current loop, resulting in undermining velocity loop and position loop control. PA1.04 needs to match velocity loop gain.

Recommended range: 1,000,000/(2π×PA1.04) ≥PA1.01x4

For example: Velocity loop gain PA1.01=180(0.1Hz) which is 18Hz. Time constant of torque

filter should be PA1.01≤221(0.01ms)


If mechanical vibration is due to servo driver, adjusting PA1.04 might eliminate the vibration. The smaller the value, the better the responsiveness but also subjected to machine conditions. If the value is too large, it might lower the responsiveness of current loop. With higher PA1.01 value settings and no resonance, reduce PA1.04 value; With lower PA1.01 value settings, increase PA1.04 value to lower motor noise.

6.5 Gain switching

Gain switching function can be triggered internally in servo driver. Only valid under position or velocity control mode. Following effects can be realized by gain switching:

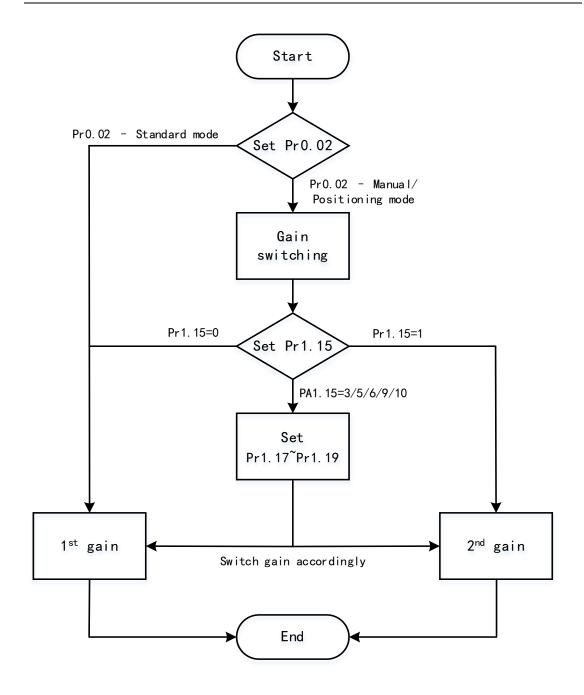
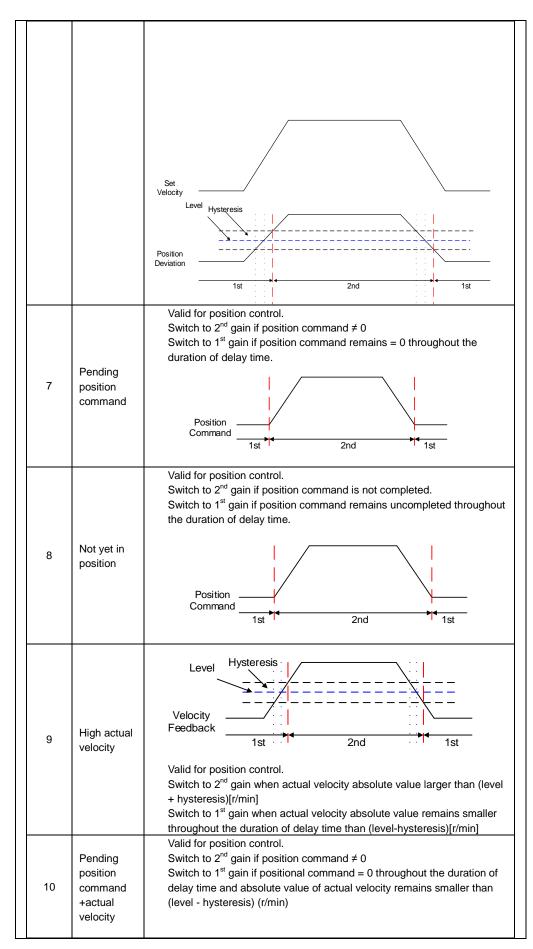
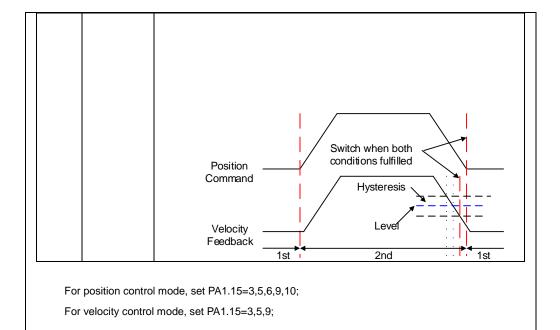

- 1. Switch to lower gain when motor stops to suppress vibration
- 2. Switch to higher gain when motor is moving at a low velocity to shorten positioning time
- 3. Switch to higher gain when motor is moving at a high velocity to improve command following behavior.

Diagram below shows gain switching when motor stops.

1st gain (Pr1.00-Pr1.04) and 2nd gain (Pr1.05-Pr1.09) switching can be realized through manual and positioning mode. Switching condition is set through Pr1.15. Gain switching is invalid under standard mode.


Related parameters on gain switching

No.	Parameter	Label	Remarks
		Position control gain	In position control, set PA1.15=3、5、6、
1	PA1.15	•	9、10。
		switching mode	In velocity control, set PA1.15=3 、5 、9
2	PA1.17	Position control level	Please set PA1.17≥PA1.18
		switching	
3	PA1.18	Position control	If PA1.17 <pa1.18, driver="" pa1.17<="" set="" td="" will=""></pa1.18,>
3	PA1.10	hysteresis switching	=PA1.18
4	PA1.19	Position gain time	
		switching	



		Label	Position control gain switching mode	Mode		F	
F	PA1.15	Range	0~11	Default	0	Unit	-
		Activation	Immediate			Index	2115h
	Set Value	Condition	Gain switching condition				
	0	1 st gain fixed	Fixed on using 1 st gain(PA1.00-PA1				
	1	2 nd gain fixed	Fixed on using 2 nd gain (PA1.05-PA	1.09)			
	2	Reserved					
	3	High set torque	Switch to 2 nd gain when set torque command absolute value larger than (level + hysteresis)[%] Switch to 1 st gain when set torque command absolute value smaller than (level + hysteresis)[%] Hysteresis Acceleration Constant Deceleration speed Level Set Torque 1st 2nd 1st				
	4	Reserved	Reserved				
	5	High set velocity	Valid for position and velocity of Switch to 2 nd gain when set velothan (level + hysteresis)[r/min] Switch to 1 st gain when set velothan (level-hysteresis)[r/min]	ocity comma	and absolut		rger
	6	Large position deviation	Valid for position control. Switch to 2 nd gain when position (level + hysteresis)[pulse] Switch to 1 st gain when position (level-hysteresis)[pulse]				

** Above 'level' and 'hysteresis' are in correspondence to PA1.17 Position control gain switching level and PA1.18 Hysteresis at position control switching.

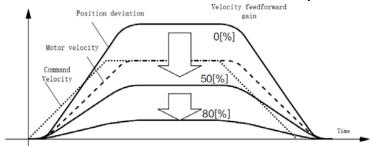
6.6 Feedforward gain

In position control, velocity feedforward is calculated by comparing the velocity control command calculated internally and velocity command calculated from position feedback. Comparing to control only using feedbacks, this will reduce position deviation and increase responsiveness. Besides, by comparing the torque needed during motion from velocity control command in comparison with velocity feedback, torque feedback can be calculated to improve system responsiveness.

6.6.1 Velocity feedforward

Velocity feedforward can be used in position control mode. When the function is enabled, it can increase velocity responsiveness, reduce position deviation during constant velocity.

	Label	Velocity feed forward gain	Mode	PP	НМ	CSP
PA1.10	Range	0~1000	Default	300	Unit	0.10%
	Activation	Immediate			Index	2110h
Used for decreasing following error caused by low responsiveness of velocity loop. Might cause overshoot or increase in noise if set value is too high.						


PA1.11	Label	Velocity feed forward filter time constant	Mode	PP	НМ	CSP
	Range	0~6400	Default	50	Unit	0.01ms

Activation	Immediate	Index	2111h		
Set velocity feed forward low pass filter to eliminate high or abnormal frequencies in velocity feed forward command. Often used when position command with low resolution or high electronic gear ration to smoothen velocity feed forward. Position deviation under constant velocity can be lowered with higher velocity feed forward					
J	to refer to the equation below. Set $velocity[\frac{Uint}{s}]$ iation[Uint]= $\frac{Set \ velocity[\frac{Uint}{s}]}{Position \ loop \ gain[Hz]} \ x$	eed fowar 100	d gain[%]		

6.6.2 Velocity feedforward application

Set Pr1.11 to around 50 (0.5ms), then tune Pr1.10 from 0 to bigger values until the velocity feedforward achieves better performance. Under constant velocity, the position deviation in a motion will decrease as the velocity feedforward gain increase.

Steps to tuning:

- Increase Pr1.10 to increase responsiveness but velocity overshoot might occur during acc-/deceleration.
- 2. By reducing Pr1.11, velocity feedforward would be more effective and vice versa. Pr1.10 and Pr1.11 need to be tuned to a balance.
- 3. If mechanical noise exists under normal working conditions, please increase Pr1.11 or use position command filter (1 time delay/ FIR smoothing filter)

6.6.3 Torque feedforward

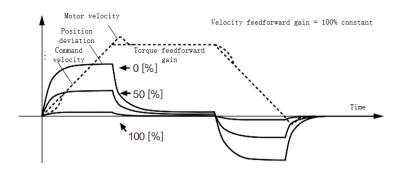
Position control mode:

Torque feedforward can increase the responsiveness of torque command, decrease position deviation during constant acc-/deceleration.

Velocity control mode:

Torque feedforward can increase the responsiveness of torque command, decrease velocity deviation during constant velocity.

	Label	Torque feed forward gain	Mode	PP	PV	НМ	CSP	CSV
PA1.12	Range	0~1000	Default	0		Unit	0.19	%
	Activation	Immediate				Index	2112	2h
	Before using torque feed forward, please set correct inertia ratio PA0.04. By increasing torque							
	feed forward gain, position deviation on constant acceleration/deceleration can be reduced to							
	close to 0. U	nder ideal condition and trapezoidal sp	peed profile,	positio	n de	viation o	of the v	vhole



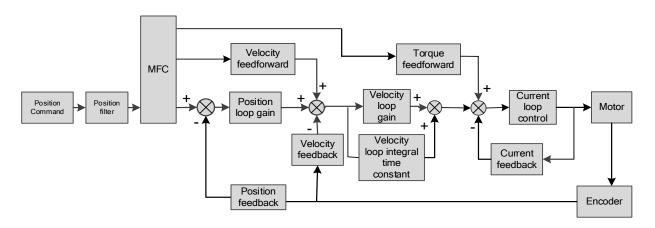
motion can be reduced to close to 0. In reality, perturbation torque will always exist, hence position deviation can never be 0.

DA4 42	Label	Torque feed forward filter time constant	Mode	PP	PV	НМ	CSP	CSV
PA1.13	PA1.13 Range	0~6400	Default	0	-	Unit	0.01	Ims
	Activation	Immediate			- 1	ndex	211:	3h
	•	er to eliminate abnormal or high frequ		que fe	ed for	ward co	ommar	nd.
	Usually used	d when encoder has lower resolution of	r precision.					
Noise reduces if torque feed forward filter time constant is set higher but position deviatio				n will				
	increase at acceleration varied points.							

6.6.4 Torque feedforward application

Set Pr1.13 to around 50 (0.5ms), then tune Pr1.10 from 0 to bigger values until torque feedforward achieves better performance. Under constant acc-/deceleration, the position deviation in a motion will decrease as the velocity feedforward gain increase.

Steps to tuning:


- 2. Increase Pr1.12 to increase responsiveness but velocity overshoot might occur during acc-/deceleration.
- 3. By reducing Pr1.13, torque feedforward would be more effective and vice versa. Pr1.12 and Pr1.13 need to be tuned to a balance and reduce noise.

6.7 Model following control

Model following control is a type of closed loop control system. First, an ideal model is constructed and acts as a reference for actual model in a closed loop control. Model following control can be treated as a control mode with 2 flexibilities: Reference model can be used to improve command responsiveness and closed loop control used to increase responsiveness of the system towards interference. They don't affect each other.

Model following control can be used in position loop control to increase responsiveness to commands, reduce positioning time and following error. This function is only available in position control mode.

To adjust model following control

- Automatic adjustment
 Set model following bandwidth PA0.00 = 1 for automatic adjustment. Now, PA0.00 = PA1.01, model following bandwidth is adjusted automatically according to different
- 2. Manual adjustment

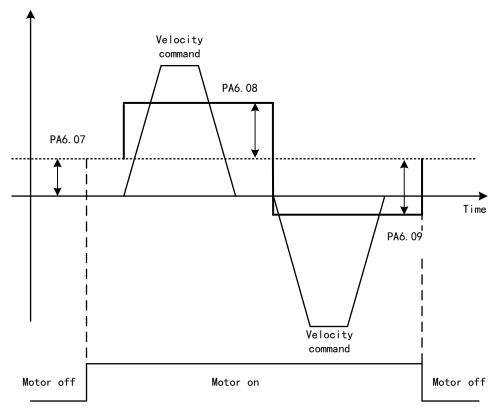
velocity loop gain.

Please used manual adjustment if

- Automatic adjustment is not satisfactory.
- Responsiveness needs further improvement in comparison with automatic adjustment.
- There is a need to set servo gain or model following control parameters manually.

Steps to manually adjust

Step	Content
1	Set up vibration suppression.
2	Set up the right inertia ratio.



3	Manually adjust gain.
4	Increase PA0.00 provided that there is no overshoot and vibration. Usually
	PA0.00 > PA1.01 is recommended.

Model following bandwidth determines the responsiveness of the servo system. Increase the value set will increase responsiveness and reduce positioning time. Overshoot can be prevented if it is set at a lower value but responsiveness will be lowered. Model following bandwidth shouldn't be too large for mechanical structure with lower stiffness, excessive position deviation alarm might occur under high velocity.

6.8 Friction compensation function

This function is to compensation for changes in load to reduce the effect of friction in motion. The compensation value is directional.

Vertically loaded axis: A constant eccentric load torque is applied on the motor. By adjusting PA6.07, positioning deviation due to different motional direction can be reduced.

Belt-driven axis: Due to large radial load with dynamic frictional torque. Positioning time delay and deviation can be reduced by adjusting PA6.08 and PA6.09.

	Label	Torque command additional value	Mode		F		
PA6.07	Range	-100~100	Default	0	Unit	%	
	Activation	Immediate			Index	2607h	
	To set torque forward feed additional value of vertical axis.						
	Applicable for	or loaded vertical axis, compensate co	nstant torqu	e.			
	Application:	When load move along vertical axis, p	al axis, pick any point from the whole motion and				
	stop the load	d at that particular point with motor ena	abled but no	t rotating. I	Record out	tput torque	

value from d04, use that value as torque command additional value (compensation value)

	Label	Positive direction torque compensation value	Mode		F	
PA6.08	Range	-100~100	Default	0	Unit	%
	Activation	Immediate			Index	2608h
	Label	Negative direction torque compensation value	Mode		F	
PA6.09	Range	-100~100	Default	0	Unit	%
	Activation	Immediate			Index	2609h
	To reduce the effect of mechanical friction in the movement(s) of the axis. Compensation					
	values can be	set according to needs for both rotation	onal direction	ns.		

Applications:

1. When motor is at constant speed, d04 will deliver torque values.

Torque value in positive direction = T1;

Torque value in negative direction = T2

PA6.08/PA6.09 =
$$T_f = \frac{|T1 - T2|}{2}$$

6.9 Parameters adjustment under different control modes

Under different control mode, parameters adjustment has to be adjusted in this order: "Inertia measuring" -> "Auto gain adjustment"->" Manual gain adjustments"

6.9.1 Position control mode

Set load-inertia ratio PA0.04 after inertia determination.

No.	Parameter	Label
1	PA1.00	1st position loop gain
2	PA1.01	1 st velocity loop gain
3	PA1.02	1 st velocity integral time constant
4	PA1.03	1 st velocity detection filter
5	PA1.04	1st torque filter time constant

6	PA1.05	2 nd position loop gain
7	PA1.06	2 nd velocity loop gain
8	PA1.07	2 nd velocity integral time constant
9	PA1.08	2 nd velocity detection filter
10	PA1.09	2 nd torque filter time constant
11	PA1.10	Velocity feedforward gain constant
12	PA1.11	Velocity feedforward filter time constant
13	PA1.12	Torque feedforward gain
14	PA1.13	Torque feedforward filter time constant
15	PA1.15	Position control gain switching mode
16	PA1.17	Position control switching level
17	PA1.18	Position control switching hysteresis
18	PA1.19	Position gain switching time

1^{st} and 2^{nd} gain initial values are obtained by automatic gain adjustment

No.	Parameter	Label
1	PA1.00	1st position loop gain
2	PA1.01	1st velocity loop gain
3	PA1.02	1st velocity integral time constant
4	PA1.03	1st velocity detection filter
5	PA1.04	1st torque filter time constant
6	PA1.05	2 nd position loop gain
7	PA1.06	2 nd velocity loop gain
8	PA1.07	2 nd velocity integral time constant
9	PA1.08	2 nd velocity detection filter
10	PA1.09	2 nd torque filter time constant

Manually adjusted gain parameters

No.	Parameter	Label
1	PA1.00	1 st position loop gain
2	PA1.01	1st velocity loop gain
3	PA1.02	1st velocity integral time constant
4	PA1.04	1st torque filter time constant
5	PA1.10	Velocity feedforward gain constant
6	PA1.11	Velocity feedforward filter time constant

6.9.2 Velocity control mode

Velocity control mode parameters adjustment is pretty similar to position control mode. Except for position loop gain PA1.00 and PA1.05, velocity feedforward gain (Pr1.10)

6.9.3 Torque control mode

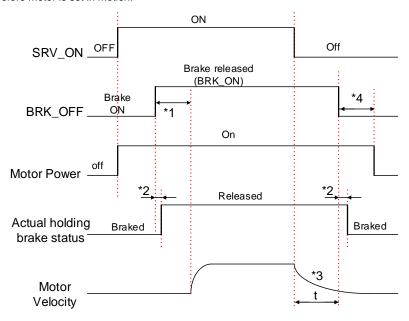
Parameters adjustment for torque control mode has to be differentiate into 2 conditions:

- When actual velocity reaches velocity limit, adjustment will be as per velocity control mode. Motor will switch from torque control to velocity limit as velocity control.
- When actual velocity doesn't reach velocity limit yet, Except for position loop gain, velocity loop gain and feedforward gain, parameter adjustments as per velocity control mode.

If there is no velocity limit and control is through torque command, please deactivate torque and notch filter, set velocity limit to max. value and increase velocity loop gain to as high as possible.

6.10 Safety Functions

External brake deactivation output signal BRK-OFF


Please refer to PA4.11 to set up the I/O output function parameters. When enabled and timing conditions are fulfilled, the set I/O output will deliver ON signal.

	Label	Motor power-off delay time	Mode		F	
PA4.37	Range	0~3000	Default	100	Unit	1ms
	Activation	Immediate			Index	2437h
To set delay time for holding brake to be activated after motor power off to prevent axis from sliding.						

PA4.38	Label	Delay time for holding brake release	Mode	F		
	Range	0~3000	Default	0	Unit	1ms
	Activation	Immediate			Index	2438h

To set delay time for holding brake to be released after motor power on. Motor will remain at current position and input command is masked to allow holding brake to be fully released before motor is set in motion.

- *1: Delay time set in PA4.38
- *2: Delay time from the moment BRK_OFF signal is given until actual holding brake is released or BRK_ON signal is given until actual holding brake is activated. It is dependent on the holding brake of the motor.
- *3: Deceleration time is determined by PA6.14 or if motor speed goes below PA4.39, whichever comes first. BRK_OFF given after deceleration time.
- *4: PA4.37 set time value.

Delay time from the moment SRV_ON is given until BRK_OFF switch to BRK_ON, is less than 500ms.

6.10.1 Emergency stop function

Emergency stop is used when an alarm occurs or a servo prohibition signal is received when servo driver is enabled.

Method 1: Set up PA4.43 to enable the function

	Label	Emergency stop function	Mode	F		
PA4.43	Range	0~1	Default	0	Unit	-
	Activation	Immediate			Index	2443h

- 0: Emergency stop is valid, servo driver will be forced to STOP and alarm occurs.
- 1: Emergency stop is invalid, servo driver will not be forced to STOP.

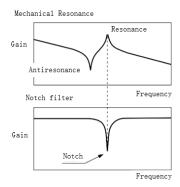
	Label	Driver prohibition input settings	Mode	F				
PA5.04	Range	0~2	Default	0	Unit	-		
	Activation	Immediate			Index	2504h		
	To set driver prohibition input (POT/NOT): If set to 1, no effect on homing mode.							
	Set value	Description						
	0	POT → Positive direction drive prof	nibited					
		NOT → Negative direction drive pro	ohibited					
	1	POT and NOT invalid						
	2	Any single sided input from POT or NOT might cause Er260						
	In homing mode, POT/NOT invalid, please set object dictionary 5012-04 bit0=1							

Method 2: Using 605Ah object dictionary through master device to activate this function.

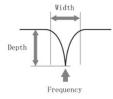
	Label	Servo braking torque setting	Mode		F	
PA5.11	Range	0~500	Default	0	Unit	%
	Activation Immediate				Index	2511h
	To set torque	e limit for servo braking mode.				
If PA5.11 = 0, use torque limit as under normal situation.						
Between max. torque 6072 and PA5.11, actual torque limit will take smaller value.						

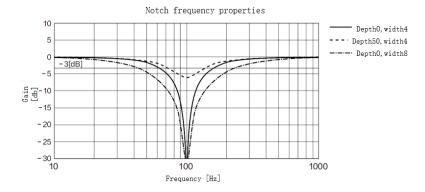
6.11 Vibration Suppression

6.11.1 Mechanical resonance suppression


Mechanical system has certain resonance frequencies. When servo gain is increased, resonance might occur at around mechanical resonant frequencies, preventing gain value from increasing. In such situation, notch filter can be used to suppress resonance to set higher gains or lower vibration.

To suppress mechanical resonance:


- 1. Torque command filter time constant Set filter time constant to reduce gain at around resonant frequencies Torque command filter blocked frequencies(Hz) fc=1/ [$2\pi \times PA1.04(0.01ms) \times 0.00001$)]
- 2. Notch filter


Notch filter suppress mechanical resonance by reducing gain at certain frequencies. When notch filter is correctly set, resonance can be suppressed and servo gain can be increased.

- Notch filter bandwidth
 Center frequency of the notch filter, frequency bandwidth with reduction of -3dB.
- Notch filter depth The ratio between input and output of center frequency. When depth = 0, center frequency output is totally off and when depth = 100, Hence when notch filter depth is set at lower value, the depth is higher and better at suppressing mechanical resonance but it might cause system instability.

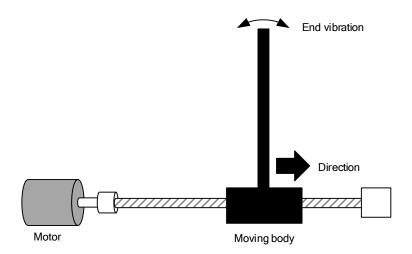
If the amplitude-frequency curve from mechanical properties analysis tool doesn't show any obvious peak but vibration did occur, it might not be due to mechanical resonance, it may be that servo gain has reached its limit. This kind of vibration can't be suppressed by using notch filter, only by reducing gain and torque command filter time.

To use notch filter

Automatic notch filter

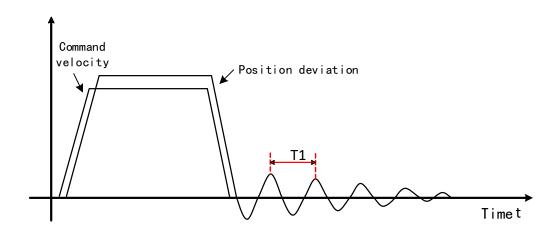
- 1. Set PA2.00 = 1 for auto notch filter adjustment
- 2. If PA0.03 stiffness increases, 3^{rd} group of notch filter (PA2.07/PA2.08/PA2.09) updates automatically when driver is enabled. PA2.00 = 0, auto adjustments stop.

If resonance is suppressed, it means self-adjusting notch filter is working. If resonance occurs when mechanical stiffness increases, please use manual notch filter, set filter frequency to actual resonant frequency.

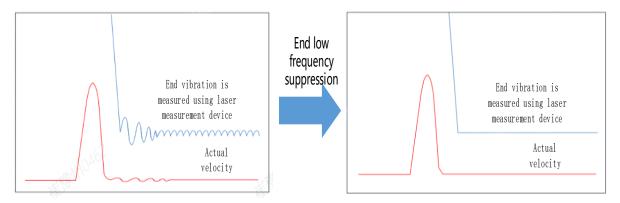

Manual notch filter

There are 2 ways to use manual notch filter.

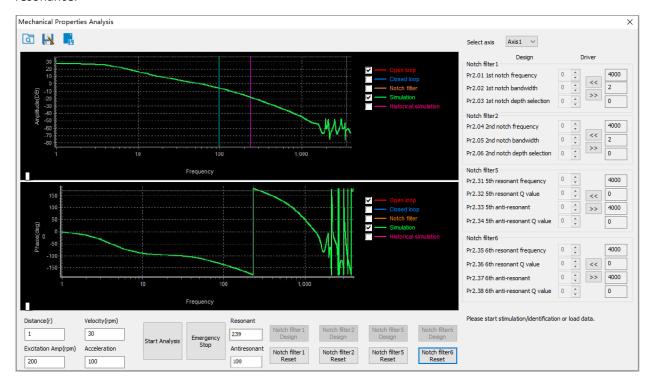
- 1. After enabling self-adjusting notch filter, set the values from 3^{rd} group of filters to 1^{st} group of notch filter (PA2.01/PA2.02/PA2.03), see if resonance is suppressed. If there is other resonance, set PA2.00 = 1, then set the values from 3^{rd} group of filters to 2^{nd} group of notch filter (PA2.04/PA2.05/PA2.06)
- 2. Get resonant frequency, notch filter bandwidth and depth and set it into the corresponding parameters through Motion Studio.


6.11.2 End vibration suppression

If the mechanical structure has an end that is long and heavy, it might cause end vibration at emergency stop and affect the positioning. Usually happens on long armed axis with loose end. The frequency is usually within 100Hz which is lower than mechanical resonant frequencies. It is called low-frequency resonance which can be prevented by applying low frequency suppression function.


To apply low frequency suppression

- 1. Trace current/ position deviation waveform when motion stops.
- 2. Measure the vibration cycle T1 of current waveform.
- 3. Convert T1 into low frequency resonance by F1 = 1/T1
- 4. Write F1 into PA2.14
- If some other low frequency resonance occurs, please repeat step 1-3 and write F2 into PA2.16.



The result of suppressing low frequency resonance

6.11.3 Mechanical properties analysis

To determine mechanical and set up notch filter parameters to suppress vibration caused by resonance.

To avoid strong vibration, please first set lower excitation amplitude. However, if the set value is too low, data waveform will include some degree of distortion.

If vibration occurs during tests which can't be reduce through lowering electrical current excitation, it might be due to excessive gain. Please lower velocity gain and set notch filter as accordance from the mechanical properties analysis. Or might be due to inertia settings (Pr0.04) is too large, please use optimal inertia ratio value.

6.12 Multiturn absolute encoder

Multiturn absolute encoder records the position and the revolution counts of the motor. When driver is powered-off, multiturn absolute encoder will backed up the data using battery and after powering on, the data will be used to calculated absolute mechanical position and there is no need for a mechanical homing process. Use widely in robotic arms and CNC machines.

If it is the first time using the encoder, please home the mechanical axis and initialize the absolute position of the encoder to zero. Set up a homing point and only home when there is an alarm. Please stop the axis before reading any position data to prevent inaccuracy.

6.12.1 Parameters setting

	Label	Absolute Encoder settings	Mode	PP	НМ	CSP
PA0.15	Range	0~32767	Default	0	Unit	-
	Activation	Immediate			Index	2015h

0: Incremental mode

Used as an incremental encoder. Doesn't retain position data on power off. Unlimited travel distance.

1: Multiturn linear mode:

Used as a multiturn absolute encoder. Retrain position data on power off. For applications with fixed travel distance and no multiturn data overflow.

2: Multiturn rotary mode:

Used as a multiturn absolute encoder. Retrain position data on power off. Actual data feedback in between 0-(PA6.63). Unlimited travel distance.

3: Single turn absolute mode:

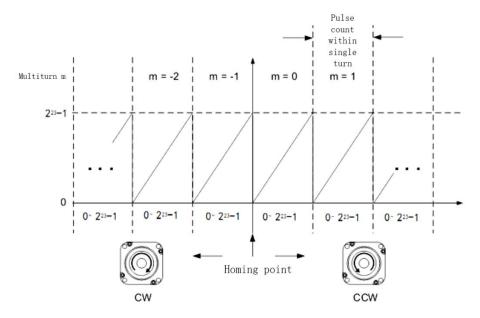
Used when travel distance is within 1 revolution of the encoder. Data overflow will trigger

- 5: Clear multiturn alarm and activate multiturn absolute function. Will switch to multiturn mode once alarm cleared, if remains at 5 after 3s, please solve according to Er153.
- 9: Clear multiturn position, reset multiturn alarm and activate multiturn absolute function. Will switch to multiturn mode once alarm cleared, if remains at 9 after 3s, please solve according to Er153. Please disable axis before setting to 9 and home the axis before using.

6.12.2 Read absolute position

1. Steps:

- 1) First, select a motor with multiturn absolute encoder, install battery and confirm whether the driver version supports the specific motor;
- 2) Set PA0.15 = 1. If it is the first time of installation, Err153 will occur because battery is newly installed and position data is invalid. Please home the axis and initialize the absolute position of the encoder to zero.
- 3) When absolute homing point is set and there is no fault with the battery, the alarm will be cleared
- 4) Finally, the user can read the absolute position. Position won't be lost even if the driver is powered off.

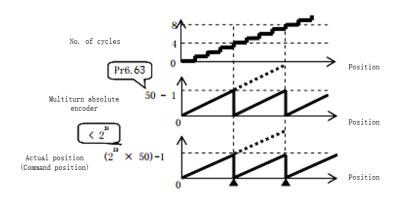


*Note: The newly installed encoder is not initialized and will alarm

2. Read absolute position

When the rotor turns in clockwise direction, the revolution count will be negative; turns in counter clockwise direction, the count will be positive. No. of revolutions will be from -32767 to +32767. If the count number reaches +32767 in counter clockwise direction, the count will revert back to -32768, -32767 and vice versa for clockwise direction.

As for position data, it depends on the precision of the encoder. For 17 bit = 0-131071, 23 bit = 0-8388607



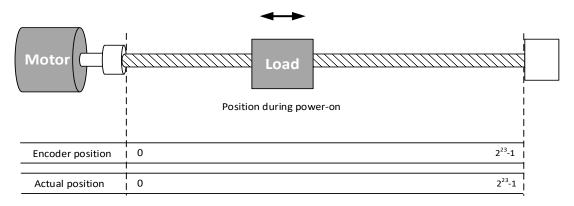
Read data from 6064h object dictionary

Please read data only when the motor is fully stopped or it might cause calculation errors. Please repeat this step for at least twice to make sure the result is uniform.

Multiturn rotational mode

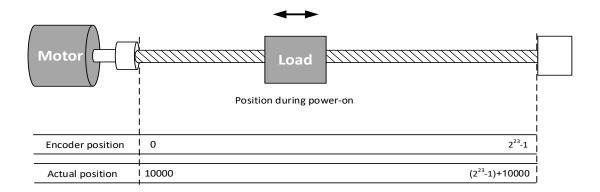
For absolute encoder, multiturn rotational mode (PA0.15 = 2, PA6.63 set to multiturn upper limit) is added on top of incremental mode and multiturn linear mode. Actual feedback multiturn data is always between 0 - [PA6.63 + 1], regardless of the direction of rotation. There is no limit to no. of rotation and no data overflow.

Single turn absolute mode


Use this mode when the travel distance of the axis is within a single turn of the rotor.

1. Target position input range - EtherCAT

When using 23-bit absolute encoder, under single turn absolute mode, electronic gear ratio =1:1

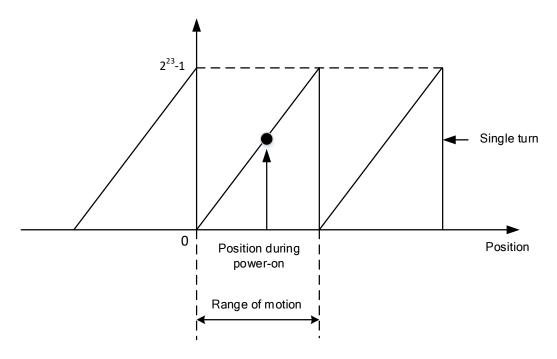

Homing point offset 607Ch = 0, target position range = $0 - [2^{23}-1]$ Axis is homed, target position range = 607Ch - $[2^{23}-1+607$ Ch]

When electronic gear ratio = 1:1, 607Ch = 0:

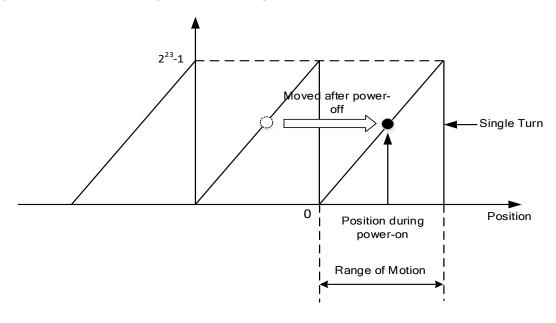
When electronic gear ratio = 1:1, 607Ch = 10000:

3. Clear multiturn position

Before clearing multiturn position, axis needs to be homed. After clearing multiturn position, revolution count = 0 but absolute position remains unchanged and Err153 alarm will be cleared.


Please make sure the homing point is within the range of 1 revolution of the rotor. Installation and setup of the homing point can be set with the use of auxiliary function D21 on the front panel.

By setting PA0.15 to 9, multiturn position will be cleared.

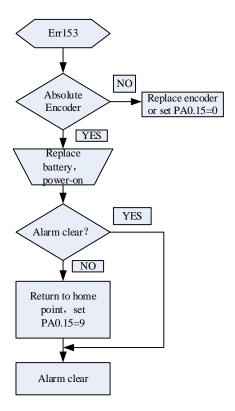

Please take notice of motor position during power on. Range of motion of a motor depends on the position of the motor during power on (23-bit absolute encoder as example).

If the motor position is as shown below during power on. The range of motion of the motor is within the range of a single turn of the motor from motor position during power on.

If power is turned off at position as shown below and power on when motor reaches the position below. Motor range of motion changes as shown below.

6.12.3 Absolute Encoder Related Alarm

The alarm can determine if absolute value encoder is valid. If battery power is low, not a motor with absolute encoder, encoder error etc. occurs, user can find out about the error from alarm output or on the front panel. Controller will stop any operation until alarm is cleared.


Alarm output:

Err153 will be shown on front panel or by I/O ALM signal and from controller.

Err153 might occur,

- (1) If absolute encoder is used for the first time and due to installation of new batteries Axis needs to be homed and multiturn data needs to be cleared.
 - (2) If battery voltage is lower than 3.2v. Replace battery and restart the motor.
- (3) If battery voltage is lower than 2.5v or battery power was cut off. Replacing the battery won't clear the alarm. Axis needs to be homed and multiturn data needs to be cleared.

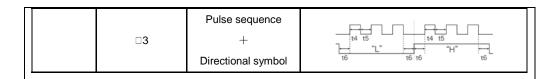
4. Alarm processing flow chart

6.13 Probe

Motor feedback position latching function can be realized through input signal with probe function. EL7-EC supports up to 2 inputs with probe function and can be used simultaneously, to record the position information corresponding to probe signal rising and falling edge. Probe 1 signal comes from CN1 terminal pin 1 and 5 differential signal. Probe 2 signal comes from CN1 terminal pin 2-6 differential signal.

	Label	Probe signal polarity settings	Mode		F	
PA0.07	Range	0~3	Default	3	Unit	_
	Activation	After restart			Index	2007h

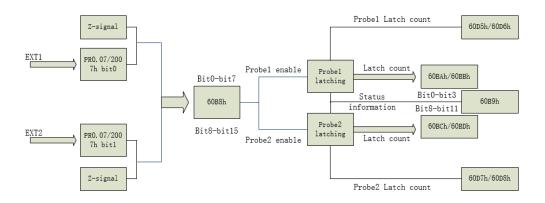
Probe signal polarity settings take effect when PA0.01 = 9


Set value	Details			
0	Probe 1 & 2 polarity inversion			
1	Probe 2 polarity inversion			
2	Probe 1 polarity inversion			
3	No polarity inversion for probe 1 & 2			

If PA0.01 \neq 9, PA0.07 = Command pulse input mode settings.

Command pulse input

Command Polarity inversion (PA0.06)	Command pulse input mode settings (PA0.07)	Command Pulse Mode	Positive signal	Negative signal	
1 03	0 or 2	90°phase difference 2 phase pulse (Phase A+ Phase B)	A	t1 t1 +1 +1 +1 +1	
[0]	1	CW pulse sequence + CCW pulse sequence	t2 t2		
	[3]	Pulse sequence + Directional symbol	t4 t5 "H"	t4 t5 t6 t6 t6	
1	0 or 2	90°phase difference 2 phase pulse (Phase A+Phase B)	A B	ti ti	
	1	CW pulse sequence + CCW pulse sequence	12 12	t3 t2 t2	



Command pulse input signal max. frequency and min. duration needed

Command pulsa input interface		Max. Frequency	Min. duration needed (µs)						
Command puise	Command pulse input interface		t1	t2	t3	t4	t5	t6	
Pulse sequence	Differential	500 kHz	2	1	1	1	1	1	
interface	Open collector	200 kHz	5	2.5	2.5	2.5	2.5	2.5	

Please set >0.1µs for the duration between rising and falling edge of command pulse input signal.

6.13.1 Probe function

When using EXT1 or EXT2 as probe, please set as following:

- a) Set polarity of EXT 1 or EXT 2 as probe. Set the level polarity of the probes using 0x2007/Pr0.07. Bit 0 for EXT1 signal, bit 1 for EXT2 signal
- b) Probe function is set through 0x60B8 (Bit 0-7 is for probe 1, bit8-15 is for probe 2). Functions including activation trigger signal selection, triggering mode and triggering signal edge.

Please take note:

- (i) Triggering mode: Single trigger, rising signal edge = valid; triggering mode: Continuous trigger, rising and falling edge = valid
- (ii) After activation, trigger signal selection, triggering signal edge settings, counter will be reset and 0x60B9 status will change as well.
 - (iii) Probe signal level is shown in 60FD: EXT1 -> bit 26, EXT2 -> bit 27.

Related Objects

	, , , , , , , , , , , , , , , , , , , 						
Index	Sub	Label	Access	Data	Units	Range	Default
	Index			Type			
2007h	00h	Probe 1 polarity setting	RW	Uint16		0~0xFFFF	1

¹ revolution with 2500 pulses 2-phase pulse input when PA0.07=0 or 2, PA0.08 = 10000;

¹ revolution with 10000 pulses 1-phase pulse input when PA0.07=1 or 3, PA0.08 = 10000

2007h	01h	Probe 2 polarity setting	RW	Uint16		0~0xFFFF	1
60B8h	00h	Probe control word	RW	Uint16		0~65535	0
60B9h	00h	Probe status word	R0	Uint16		0~65535	0
60BAh	00h	Probe 1or Z-signal rising	R0	int32	Command	-2147483648~	0
OUBAN	uun	edge latching position	ΚU	misz	unit	2147483647	U
60BBh	00h	Probe 1 or Z-signal falling	RO	int32	Command	-2147483648~	0
OUDDII	UUII	edge latching position	ΚU	IIIIOZ	unit	2147483647	U
60BCh	00h	Probe 2 or Z-signal rising	RO	int32	Command	-2147483648~	0
OUBCII	uun	edge latching position	111132	unit	2147483647	U	
60BDh	Probe 2 or Z-signal falling RO int32	int22	Command	-2147483648~	0		
וועסטס	UUII	edge latching position	ΚU	IIIIOZ	unit	2147483647	U
60D5h	00h	Probe 1 or Z-signal rising	RO	Uint32		0~4294967296	0
ווכעוטס	UUII	edge counter	ΚU	UIIIISZ			U
60D6h	00h	Probe 1 or Z-signal falling	RO	Uint32		0~4294967296	0
000011	UUII	edge counter	NO.	JIIII3Z			U
60D7h	00h	Probe 2 or Z-signal rising	RO	Uint32		0~4294967296	0
000711	UUII	edge counter	NO.	JIIII3Z			U
60D8h	00h	Probe 2 or Z-signal falling	RO	Uint32		0~4294967296	0
000011	UUII	edge counter	KU .	JIIIGZ			U

6.13.2 Signal Input of EXT1 and EXT2

EXT1: Pin1 and Pin5 of CN1 terminal EXT2: Pin2 and Pin6 of CN1 terminal

6.13.3 Probe Control Word 60B8h

Bit	Definition	Details
0	Probe 1 enable	0Disable
		1Enable
1	Probe 1 mode	0Single trigger mode
	Probe i mode	1Continuous trigger mode
2	Probe 1 trigger signal selection	0—EXT1 signal
		1Z signal
3	Reserved	-
4	Probe 1 rising edge trigger	0Disable
		1Enable
5	Probe 1 falling edge trigger	0Disable
	Frobe rialling edge trigger	1Enable
6-7	Reserved	-
8	Probe 2 enable	0Disable
		1Enable
9	Probe 2 mode	0Single trigger mode
	Probe 2 mode	1Continuous trigger mode
10	Probe 2 trigger signal	0—EXT2 signal
	selection	1Z signal
11	Reserved	-

12	Probe 2 rising edge trigger	0Disable
		1Enable
13	Drobe 2 falling odge trigger	0Disable
	Probe 2 falling edge trigger	1Enable
14-15	Reserved	-

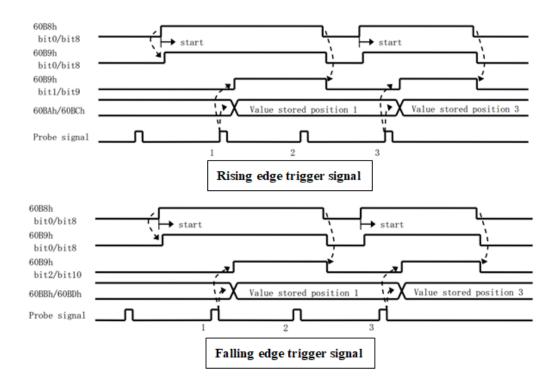
6.13.4 Probe Status Word 60B9h

Bit	Definition	Details		
0	Probe 1 enable	0Disable 1Enable		
1	Probe 1 or Z-signal rising edge trigger	0 not executed 1 executed		
2	Probe 1 or Z-signal falling edge trigger	0 not executed 1 executed		
3-5	Reserved	-		
6-7	Reserved	-		
8	Probe 2 enable	0Disable 1Enable		
9	Probe 2 or Z-signal rising edge trigger	0 not executed 1 executed		
10	Probe 2 or Z-signal falling edge trigger	0 not executed 1 executed		
11-13	Reserved	-		
14-15	Reserved	-		

6.13.6 Latch Position Register

Index	Details
60BAh	Probe 1 or Z-signal rising edge latch position
60BBh	Probe 1 or Z-signal falling edge latch position
60BCh	Probe 2 or Z-signal rising edge latch position
60BDh	Probe 2 or Z-signal falling edge latch position

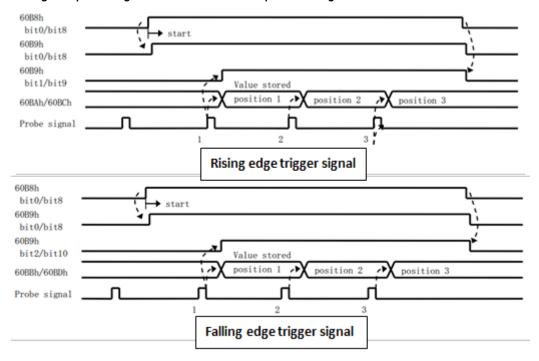
6.13.7 Latch Counter Register


Index	Details
60D5h	Probe 1 or Z-signal rising edge counter
60D6h	Probe 1 or Z-signal falling edge counter
60D7h	Probe 2 or Z-signal rising edge counter
60D8h	Probe 2 or Z-signal falling edge counter

6.13.8 Probe mode

Set bit1/bit9 of 60B8h (Probe mode), 0 = Single trigger mode, 1 = Continuous trigger mode.

(1) Single trigger mode


Triggers only when the trigger signal is valid for the first time. In order to latch the position, users need to set bit0/bit8 of 60B8h to 0, then set bit0/bit8 of 60B8h to 1. The sequence diagram is as shown below:

(2) Continuous trigger mode

The data saved from signal triggering will be saved until the next trigger signal. Enabling the probe again is not needed. Sequence diagram as shown below:

6.14 Other Functions

6.14.1 Functions under Position mode

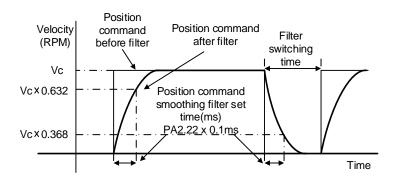
Electronic gear function

If command frequency from controller is not enough which cause the motor to not reach target rotational velocity, frequency can be increased using this function.

7 10.00	Label	Command pulse count per revolution	Mode		F		
PA0.08	Range	0~8388608	Default	0	Unit	P-	
	Activation	After restart			Index	2008h	
	Pulses per revolution can be set using object dictionary 608F, 6091, 6092. However, PA0.08						
	has higher p	has higher priority.					

Index	Label	Encoder Increments			Mode	PT		
608Fh-01	Range 0~2147483647			Default	0	Unit	encoder	
000111-01	Structure	VAR	Туре	UINT32	Mapping	TPDO	Access	RO
	To set encod	der resolution	า					

Index	Label	Motor Rev	olutions		Mode		F	
6091h-01	Range	1~214748	3647		Default	1	Unit	r
000.111 01	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW
	To set electron	ectronic gear ratio numerator						
Index	Label	Shaft Revo	Shaft Revolutions				F	
6091h-02	Range	1~214748	3647		Default	1	Unit	r
003111-02	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW
	To set electron	onic gear ra	tio denoi	minator				
Index	Label	Feed			Mode	F		
6092h-01	Range	1~214748	3647		Default	10000	Unit	Command/r
000211 01	Structure	VAR	Туре	UINT32	Mapping	RPDO	Access	RW
	If 6092h-01(Feed consta	nt) is no	t equal to 608Fh	n(Position er	ncoder res	olution), th	ien:
	Electronic ge	ear ratio = E	ncoder i	ncrements / 609	2h-01			
	If 6092h-01(Feed consta	nt) is eq	ual to 608Fh(Po	sition encod	ler resolut	ion), then:	
	Electronic ge	ear ratio = 60	091-01 /	6092h-01				

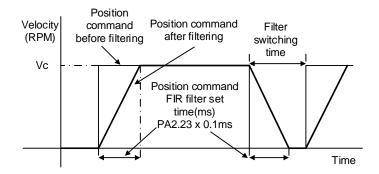

Position command filter function

To smoothen the position command after frequency divider/multiplier

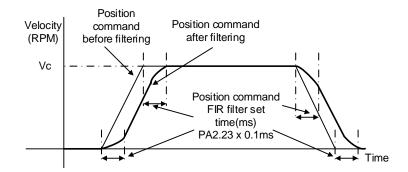
	Label	Position command smoothing filter	Mode	PP	НМ	CSP
PA2.22	Range	0~32767	Default	300	Unit	0.1ms
	Activation	After stopping			Index	2222h

To set time constant of 1 time delay filter of position command.

To set time constant of 1 time delay filter, according to target velocity Vc square wave command as show below.



Usually applied when there is rather sharp acceleration which might cause motor overshoot or undershoot. To smoothen command signal, reduces impact to machines and eliminate vibration. If PA2.22 is set too high, overall time will be lengthened.



	Label	Position command FIR filter Mode P		PP	НМ	CSP
PA2.23	Range	0~10000	Default	0	Unit	0.1ms
	Activation	After disabling	Index	2223h		

As shown below, when target velocity Vc square wave command reaches Vc, it becomes trapezoidal wave after filtering.

As shown below, when target velocity Vc trapezoidal command reaches Vc, it becomes S wave after filtering.

Usually applied when there is rather sharp acceleration which might cause motor overshoot or undershoot. To smoothen command signal, reduces impact to machines and eliminate vibration. If PA2.23 is set too high, overall time will be lengthened.

^{**}Please wait for command to stop and after filter idle time to modify PA2.23.

Filter switching time = (PA2.23 set value x 0.1ms + 0.25ms)

In Position

Positioning completed status can be determined by output of INP signal. Under position control mode, the absolute value of position deviation counter will be ON if positioning is under the range set in PA4.31.

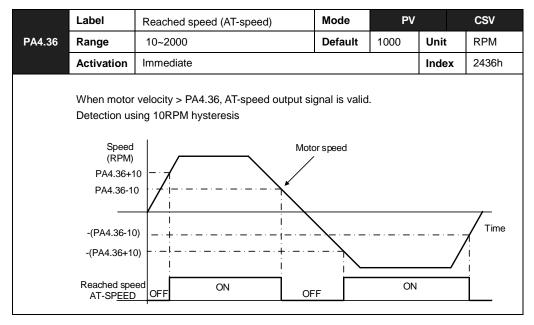
Label		Positioning complete range	Mode	PP	НМ	CSP	
PA4.31	Range	0~10000	Default	20	Unit	Command	
	Activation	Immediate			Index	2431h	
To set position deviation range of INP1 positioning completed output signal.							

PA4.32 Label Positioning complete output settings Mode PP HM CSP

Range 0~4 Default 1 Unit
Activation Immediate Index 2432h

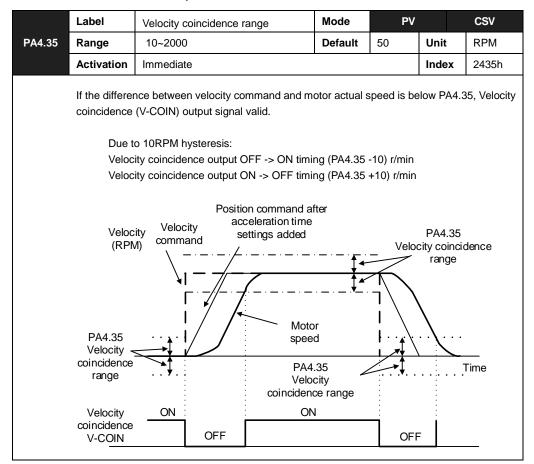
Output conditions of I	ND1 positioning	completed output	t cianal
Canon conditions of t	NE I DOSIDORINO	completed outpu	i Siuriai

Set value	Positioning completed signal
0	Signal valid when the position deviation is smaller than PA4.31
1	Signal valid when there is no position command and position deviation is smaller than PA4.31
2	Signal valid when there is no position command, zero-speed clamp detection (ZSP) signal is ON and the positional deviation is smaller than PA4.31
3	Signal valid when there is no position command and position deviation is smaller than PA4.31. Signal ON when within the time set in PA4.33 otherwise OFF.
4	When there is no command, position detection starts after the delay time set in PA4.33. Signal valid when there is no position command and positional deviation is smaller than PA4.31.

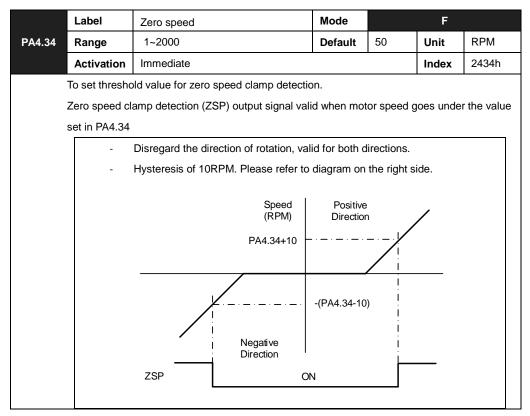

	Label	INP positioning delay time	Mode	PP	НМ	CSP		
PA4.33	Range	0~15000	Default	0	Unit	1ms		
	Activation	mmediate			Index	2433h		
	To set delay time when PA 4.32 = 3							
	Set value	Positioning completed signal	Positioning completed signal					
	0	Indefinite delay time, signal ON unt	Indefinite delay time, signal ON until next position command					
	1-15000	OFF within the time set; ON after till position command.	OFF within the time set; ON after time set. Switch OFF after receiving next position command.					

6.14.2 Functions under velocity mode

Velocity reached output signal (AT-SPEED)


AT-SPEED signal delivers after motor velocity reached target velocity.

Velocity coincidence output


Velocity command (before acc-/deceleration) coincides with motor velocity. If the difference between velocity command and motor velocity is within the range set in PA4.35, it is treated as the velocity coincides.

Zero speed position output

If the absolute value of the velocity feedback satisfies set conditions, corresponding output will be set to ON.

6.14.3 Functions under torque mode

Velocity limit is required under torque mode to make sure motor rotational velocity stays within the limit.

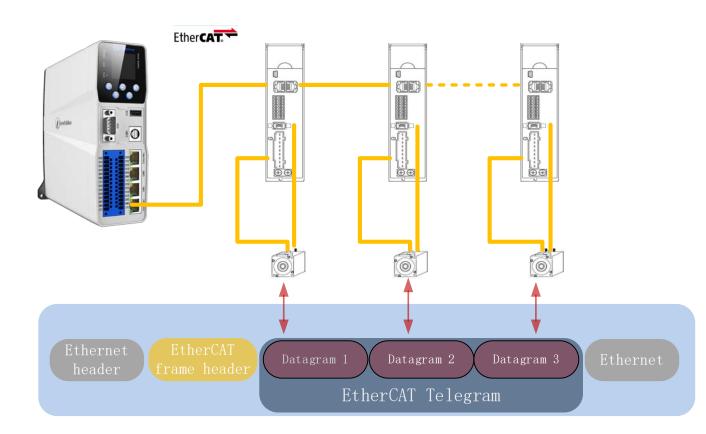
Velocity limit function

During torque control, velocity control should be within the range of velocity limit. When motor reaches velocity limit, command control will switch from torque control to command control with velocity limit.

Due to gravitational or other external factors, torque command from controller might differ from the direction of rotation of the motor, velocity limit will be invalid. Please error occurs in such situation, please set PA5.13 as stopping velocity. If velocity is over the value set in PA5.13, Er1A0 might occur and motor will stop.

	Label	Overspeed level setting	Mode		F		
PA5.13	Range	0~10000	Default	0	Unit	RPM	
	Activation	Immediate			Index	2513h	
If motor speed exceeds PA5.13, Er1A0 might occur. When PA5.13 = 0, overspeed level = max. motor speed x 1.2							

Chapter 7 EtherCAT communication


7.1 EtherCAT principle function

In comparison to Ethernet protocol which requires huge bandwidth for packets to be moved between master and clients, EtherCAT communication protocol breaks through this systemic limitation of Ethernet which requires every client to receive the whole data package from the master.

The EtherCAT master sends a telegram that passes through each node. Each EtherCAT slave device reads the data addressed to it "on the fly", and inserts its data in the frame as the frame is moving downstream. The frame is delayed only by hardware propagation delay times. The last node in a segment (or drop line) detects an open port and sends the message back to the master using Ethernet technology's full duplex feature.

The telegram's maximum effective data rate increases to over 90 %, and due to the utilization of the full duplex feature, the theoretical effective data rate is even higher than 100 Mbit/s (> 90 % of two times 100 Mbit/s).

The EtherCAT master is the only node within a segment allowed to actively send an EtherCAT frame; all other nodes merely forward frames downstream. This concept prevents unpredictable delays and guarantees real-time capabilities.

EtherCAT in standard Ethernet frame

ID number setting of EtherCAT slave station

To set up EtherCAT slave station ID number, please set PA0.24 = 1 and set required ID number to PA0.23.

	Label	EtherCAT slave ID	Mode		F			
PA0.23	Range	0~32767	Default	2	Unit	-		
	Activation	After restart			Index	2023h		
	Set ID number of the slave station under EtherCAT mode							
	Label	Source of slave ID	Mode		F			
PA0.24	Range	0~1	Default	1	Unit	-		
	Activation	After restart			Index	2024h		
	Master device automatically assigns a slave address.							
	1: The slav	e ID = PA0.23						

7.2 Synchronous Mode

7.2.1 Free Running Mode

In free moving mode, EL7-EC processes the process data sent by the master asynchronously. It only applies to asynchronous motion mode such as homing mode, protocol position mode, etc

7.2.2 Distributed clock synchronization mode

EL7-EC adopts the synchronous mode of distributed clock as shown in figure 6.2. When the master station sends process data to the slave station, the slave station immediately reads the process data, and then waits for the synchronization signal to trigger the process data to act on the driver.

The process data must arrive at the EL7-EC drive before the time of Sync0 signal T1. The drive has completed the analysis of the process data and relevant control calculation before the arrival of Sync0 event. After receiving Sync0 event, EL7-EC immediately implements the control action which has a high synchronization performance.

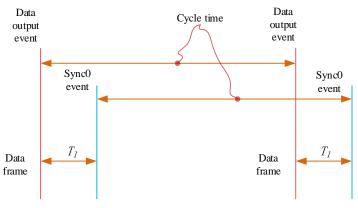


Figure 7.2 High performance synchronization mode

7.3 EtherCAT state machine

EtherCAT state machine, commonly known as "communication state machine", is mainly used to manage communication between master and slave stations. The communication function mainly includes mailbox and process data communication. The EtherCAT state machine transition relationship is shown in figure 6.3

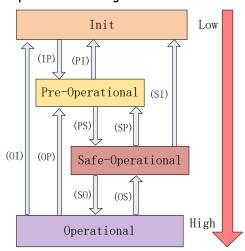


Figure 7.3 EtherCAT state machine transitions

EtherCAT state machine transitions have the following characteristics:

- ① From initialization to operational, the conversion must be carried out strictly in the order of initializing > pre-operational > safe operational > operational, from low to high, and no grade skipping is allowed
- ② When converting from high to low, grade skipping is allowed.
- ③ If state transition request to master station fails, slave station will send an error message to the master station.

EtherCAT 402 State Machine Communication function

State and transition	Communication function
Init	No mailbox or process data communication is possible.
Pre-Operational	Mailbox communication is effective, no process data communication, SDO function is valid
Safe-Operational	Mailbox communication and sending process data object is valid, SDO and TXPDO are valid
Operational	Mailbox communication, receive and send process data object valid, SDO RXPDO and TXPDO valid

7.4 CANopen over EtherCAT (CoE)

7.4.1 Network structure of EL7-EC

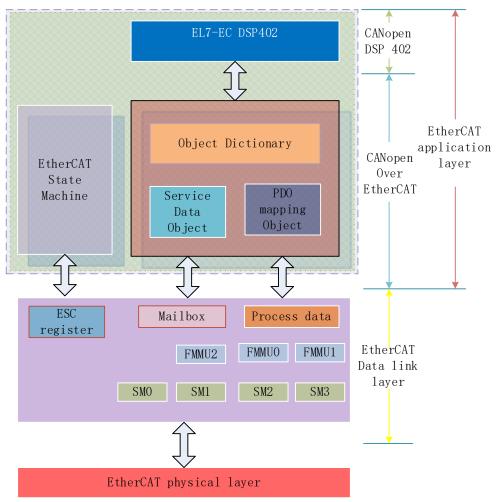


Figure 7.4 The structure of EL7-EC network module

The data link layer is mainly implemented by EtherCAT slave station controller (ESC). EL7-EC EtherCAT application layer protocol mainly includes application part (CANopen DSP402), object dictionary and communication function (red frame part), among which object dictionary and communication function can be jointly called CoE part.

Object dictionary—Bridge of communication function and application part. **Communication function**—Implementation of communication rules (SDO, PDO, etc.)

Application part——Define the specific function of the device, such as the drive, IO module.

7.4.2 Object dictionary

EtherCAT master controls the EL7-EC drive by writing and reading device state /information. To do this, the drive defines read-write parameters and read-only state values. Object dictionary is the collection of these parameters and states. The EL7-EC object dictionary contains all DSP402 and CoE related data objects in a standardized manner. It is a collection of EL7-EC parameter data structures. The EL7-EC object dictionary is the interface with which the controller communicates. EtherCAT master implements EL7-EC motion control through the interface of object dictionary.

7.4.3 Service Data Object (SDO)

The EL7-EC series supports SD0 services. EtherCAT master can configure, monitor and control EL7-EC servos by using SD0 to read and write EL7-EC object dictionaries. In conventional CANopen DS301 mode, SD0 protocol CAN only transfer 8 bytes at a time to match the data length of CAN message. In COE enhancement mode, only the payload data is expanded without changing the protocol head; In this way, the SD0 protocol uses mailboxes with larger data lengths, thus improving the transmission efficiency of big data.

7.4.4 Process Data Object (PDO)

PDO Introduction

PDO is generally used for real-time data updates. It is divided into receiving PDO (RXPDO) and sending PDO (TXPDO). The data stream direction of receiving PDO is from master station to slave station, while sending PDO is from slave station to master station The PDO function of EL7-EC supports both synchronous cycle mode and non-periodic update mode. When distributed clock synchronization mode is selected on master station, PDO will update according to the synchronization cycle. If free moving mode is selected, PDO data updates aperiodic.

PD0 mapping

Through PDO mapping, the real-time transmission of mapped objects can be realized. EL7-EC supports simultaneous transmission of 2 sets of RXPDO and 2 sets of TXPDO. Each PDO object can map up to 8 object dictionary (maximum length 32 bytes). The format of PDO mapping content is shown in table 6.2

Table 7.2 Format of PDO mapping

Bit	31~16	15~8	7~0	
Description Index of mapped Sub		Subindex of mapped	Bit length	
	object	object	(Hex)	
Example	6040h	00h	10h(16bit)	

Default PDO mapping (consistent with the XML file) is shown in table $7.3\,$

Table 7.3 Default PDO mapping

PDO Map	PDO Map	Mapping	Mapped Object			.	
object index	object Sub-index	content	Index	Sub-index	Bit length	Description	
	01h	60400010h		00h	10h(16 bit)	01h	
RXPD01	02h	607A0020h		00h	10h(16 bit)	02h	
(1600h)	03h	60B80020h		00h		03h	
RXPD02	01h	60400010h	6040h	00h	10h(16 bit)	Control word	
	02h	60FF0020h	60FFh	00h	20h(32 bit)	Target velocity	
(1601h)	03h	60B20010h	60B2h	00h	10h(16 bit)	Torque feedforward	
5)/5566	01h	60400010h	6040h	00h	10h(16 bit)	Control word	
RXPD03	02h	60710010h	6071h	00h	10h(16 bit)	Target torque	
(1602h)	03h	60870020h	6084h	00h	20h(32 bit)	Profile deceleration	
	01h	60400010h	6040h	00h	10h(16 bit)	Control word	
	02h	60980008h	6098h	00h	08h(8 bit)	Homing method	
	03h	60990120h	6099h	01h	20h(32 bit)	High homing velocity	
RXPD04	04h	60990220h	6099h	02h	20h(32 bit)	Low homing velocity	
(1603h)	05h	609A0020h	609Ah	00h	20h(32 bit)	Homing acceleration	
	06h	607C0020h	607Ch	00h	20h(32 bit)	Homing position offset	
	07h	60600008h	6060h	00h	08h(8 bit)	Operation mode	
	01h	603F0000h					
	02h	60410000h					
TVDD01	03h	60610000h					
TXPD01	04h	60640000h					
(1A00h)	05h	60B90020h					
	06h	60BA0020h					
	07h	60FD0020h					
TXPD02 (1A01h)	No default mapping						

PDO dynamic mapping

Different from CIA DS301, CoE uses PDO specified objects (1C12h/1C13h) to configure PDO mapped objects (1600h~1603h/1A00h~1A01h) to PDO SyncManager (SyncManager 2/3). PDO specified objects are defined in table 6.4

Table 6.4 1 De specifics object definitions								
Index	Sub-index	Range	Data type	Access				
	00h	0~4	U8*1)	R0 *2)				
DVDDO	01h		U16	RW				
RXPD0	02h	1/001- 1/001-	U16	RW				
(1C12h)	03h	1600h~1603h	U16	RW				
	04h		U16	RW				
TVDDO	00h	0~2	U8	R0				
TXPD0 (1C13h)	01h	14001-14011-	U16	RW				
	02h	1A00h~1A01h	U16	RW				

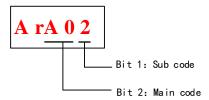
Table 6.4 PDO specifies object definitions

PDO dynamic mapping setup procedure

- A Switch EtherCAT state machine to pre-operational, then PDO map can be configured using SDO.
- B. Clear the PDO mapping object of the PDO specified object by setting 1C12-00h / 1C13-00h to 0.
- C. Invalidate the PDO mapping object by assigning 0 to the subindex 0 of 1600h~1603h /1A00h~1A01h.
- D. Reconfigure PD0 mapping content and write the mapping object into the objects in the range of 1600-01h~1600-08h, 1601-01h~1601-08h, 1602-01h~1602-08h, 03-01h~1603-08h (RXPD0 mapping content as from 1600h-01), 00-01h ~ 1A00-08h or 1A01-01h~1A01-08h (TXPD0 mapping content as from 1A00h-01) according to Table 6.3
- Example Set the total number of PDO mapping objects by writing the number of mapping objects into 1600-00h, 1601-00h, 1602-00h, 1603-00h, 1A00-00h or 1A01-00h. The total number of PDO mapping objects without mapping content will be set to 0.
- Write valid PDO mapping object index to PDO specified object by writing valid RXPDO mapping object index 1600h~1603h into 1C12-01h ~ 1C12-04h and writing valid TXPDO mapping object index 1A00h, 1A01h into 1C13-01h, 1C13-02h.
- G. Set the total number PDO specified objects by writing the number of mapped objects to 1C12-00h and 1C13-00h.
- H Switch EtherCAT state to Safe-Operational or above, the configured PDO mapping will be valid.

^{** 1)} U represents unsigned type, such as U8 for unsigned 8 bits and U16 for unsigned 16 bits

²⁾ Access: RO = Read Only, RW = Read and Write, WO = Write Only

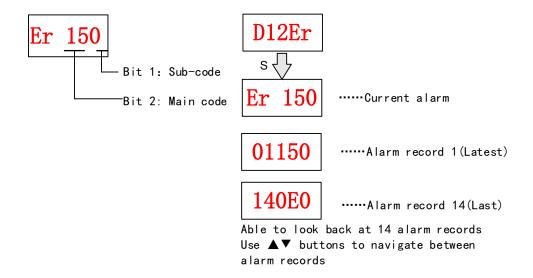


Chapter 8 Warning and Alarm

8.1 Servo drive warning

When warning occurs, driver will set protective function but **motor won't stop moving**. Error code will be displayed on the front panel.

Example of warning code:



Warnir	ng Code	Contont
Main	Code	Content
	1	Overload warning
	r	Regeneration energy overload warning (85% of the regeneration
A0	2	threshold)
AU	3	Absolute encoder battery voltage low (<3.1V) . Valid when Pr0.15 is set to 1.
	4	Change the parameter to a non-real time valid warning
	5	Pr0.01 is not 9 under current control mode, please correct this parameter

8.2 Servo drive alarm

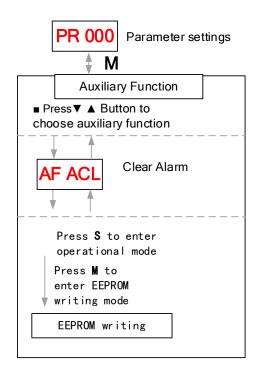
When alarm occurs, driver will set protective function and **motor stops moving**. Error code will be displayed on the front panel. Alarm history record can also be viewed in data monitoring mode, with the alarm log sub-menu displaying "d12Er".

Table 9.1 Error Code List

Error code		0		Attribu	te
Main	Sub	Content	Save	Туре	Clearable
0.4	0~1	Circuit current detection error	•	2	
0A	3	Motor power cable not connected	•	1	•
Ob	0	Control circuit power supply voltage too low		2	
UD	1	Control circuit power supply voltage too high		2	•
0c	0	DC bus overvoltage	•	1	•
	0	DC bus undervoltage	•	1	•
0d	1	Single phasing of main power supply	•	2	
	2	No main power supply detected		2	
	0	Overcurrent	•	1	
0E	1	Intelligent Power Module (IPM) overcurrent	•	1	
UE	2	Power output to motor shorted to ground	•	1	
	4	Phase overcurrent	•	1	
0F	0	Driver overheated	•	2	
	0	Motor overloaded	•	1	•
10	1	Driver overloaded	•	1	•
	2	Motor rotor blocked	•	1	•
	0	Regenerative resistor overvoltage	•	2	
12	1	Holding brake error	•	1	
	2	Regenerative resistor value too low	•	2	
	0	Encoder disconnected	•	1	
	1	Encoder communication error	•	1	
15	2	Encoder initial position error	•	1	
	3	Multiturn encoder error	•	2	
	4	Encoder parameter settings error	•	2	

	5	Encoder data overflow	•	2	•		
	6	Encoder overheated	•	2	•		
	7	Encoder counter error	•	2	•		
107	0	Encoder data error	•	1			
17	1	Encoder parameter initialization error	•	1			
18	0	Excessive position deviation	2	•			
	1	Excessive velocity deviation					
19	0	Motor vibration too strong • 2					
1.0	0	Overspeed	•				
1A	1	Velocity out of control	•	1	•		
11.	0	Bus input signal dithering	•	2	•		
1b	1	Incorrect electronic gear ratio		2			
	0	Both STO failed	•	1	•		
	1	1st STO failed	•	1			
	2	2nd STO failed	•	1			
	3	STO power supply 1 anomaly	•				
1c	4	STO power supply 2 anomaly	•				
	5	STO input circuit 1 anomaly	•				
	6	STO input circuit 2 anomaly	•				
	7	STO circuit BUFFER 1 anomaly	•				
	8	STO circuit BUFFER 2 anomaly	•				
	0	I/O input interface assignment error	•	2			
		I/O input interface function assignment		2			
21	1	error	•				
		I/O output interface function assignment		2			
	2	error	•				
	0	EEPROM parameters initialization error		2			
	1	EEPROM hardware error		2			
	2	Error saving alarm history record		2			
27	3	Error occurred when saving vendor		2			
24		parameters					
	4	Error occurred when saving communication		2			
		parameters					
	5	Error occurred when saving parameter 402		2			
	6	Data saving error during power-off					
27	0	Positive/Negative position limit triggered	_	2	_		
26	0	under non-homing mode			•		
27	0	Analog 1 input overrun limit		2	•		
27	1	Analog 2 input overrun limit	•	2	•		
28	0	Output pulse frequency too high Output pulse frequency too high					
57	0	Forced alarm input valid	•	2	•		
EF	0	Motor model no. detection error		2			
5F	1	Driver power module detection error		2			

60	0	Main loop interrupted timeout	2	
60	1	Velocity loop interrupted timeout	2	
70	0	Encryption error	2	


[Note:]

Save: Save error messages to alarm history.

Type: The type 1 and type 2 fault stop mode can be set via Pr5.10 [Sequence at alarm].

Clearable: Clearable alarm by operating the front panel and use auxiliary function

AFACL as below. Besides clearable alarms, please first solve the error and restart the servo driver to clear alarm.

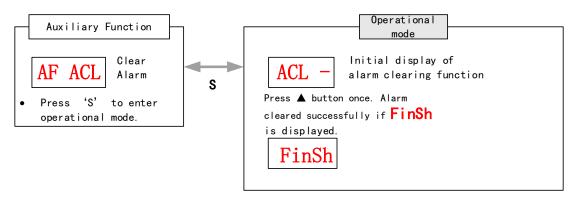


Table 8.2 Alarm and 603F correspondence

Error Code			ETG	Alarra Description
Display	1001h	603Fh	Code	Alarm Description
Er 0A0	0x04	0x3150		Phase A circuit current detection error
Er 0A1	0x04	0x3151		Phase B circuit current detection error
Er 0A3	0x04	0x3153		Motor power cable not connected
Er 0b0				Control circuit power supply voltage too low
Er 0b1	0x04	0x3206		Control power supply voltage too high
Er 0C0	0x04	0x3211		DC bus overvoltage
Er 0d0	0x04	0x3221		DC bus undervoltage
Er 0d1	0x04	0x3130		Single phasing of main power supply
Er 0d2	0x04	0x3222		No main power supply detected
Er 0E0	0x02	0x2211		Overcurrent
Er 0E1	0x02	0x2212		Intelligent Power Module (IPM) overcurrent
Er 0E2	0x02	0x2218		Power output to motor shorted to ground
Er 0E4	0x02	0x2230		Phase overcurrent
Er 0f0	0x08	0x4210		Driver overheated
Er 100	0x02	0x8311		Motor overloaded
Er 101	0x02	0x8310		Driver overloaded
Er 102	0x02	0x8301		Motor rotor blocked
Er 120	0x80	0x7701		Regenerative resistor overvoltage
Er 121	0x80	0x7702		Holding brake error
Er 122	0x80	0x7703		Regenerative resistor value too low
Er 150	0x80	0x7321		Encoder disconnected
Er 151	0x80	0x7322		Encoder communication error
Er 152	0x80	0x7323		Encoder initial position error
Er 153/Er 154	0x80	0x7325		Multiturn encoder error / Encoder parameter settings error
Er 155	0x80	0x7326		Encoder data overflow
Er 156	0x80	0x7327		Encoder overheated
Er 157	0x80	0x7328		Encoder count error
Er 170	0x80	0x7324		Encoder data error
Er 171	0x80	0x7325		Encoder parameter initialization error
Er 180	0x20	0x 8611		Excessive position deviation
Er 181				Excessive velocity deviation
Er 190	0x20	0x 8401		Motor vibration too strong
Er 1A0	0x20	0x 8402		Overspeed
Er 1A1	0x20	0x 8403		Velocity out of control
Er 1b0	0x20	0x 8612		Bus input signal dithering

	0.00	0x		Incorrect electronic gear ratio
Er 1b1	0x20	8503		-
Er 1c0	0x02	8313		Both STO failed
Er 1c1	0x02	8313		1st STO failed
Er 1c2	0x02	8313		2nd STO failed
Er 210	0x80	0x6321		I/O input interface assignment error
Er 211	0x80	0x6322		I/O input interface function assignment
LI ZII	0,00	0.00022		error
Er 212	0x80	0x6323		I/O output interface function assignment
	J SKOO			error
Er 240	0x80	0x5530		EEPROM parameters initialization error
Er 241	0x80	0x5531		EEPROM hardware error
Er 242	0x80	0x5532		Error saving alarm history record
Er 243	0x80	0x5533		Error occurred when saving vendor parameters
Er 244	0x80	0x5534		Error occurred when saving communication parameters
Er 245	0x80	0x5535		Error occurred when saving parameter 402
Er 246	0x80	0x5536		Data saving error during power-off
L1 240	0,00	0,000		Positive/Negative position limit triggered
Er 260	0x80	0x7329		under non-homing mode
Er 270				Analog 1 input overrun limit
Er 271				Analog 2 input overrun limit
Er 280	0x80	0x7201		Output pulse frequency too high
Er 570	0x80	0x5441		Forced alarm input valid
Er 5f0	0x80	0x7122		Motor model no. detection error
Er 5f1	0x80	0x1100		Driver power module detection error
Er 600	0x80	0x6204		Main loop interrupted timeout
Er 601	0x80	0x6204		Velocity loop interrupted timeout
Er 700	0x80	0x7001		Encryption error
Er 73A	0x10	0x873 A		SyncManager2 lost
Er 73b	0x10	0x873 B		SYNC0 lost
Er 73c	0x10	0x873 C		Excessive Distributed Clock error
Er 801	0x10	0x8201	0x0001	Unknown communication error
Er 802	0x80	0x5510	0x000 2	Memory overflow
Er 803	0x80	0x5511		RAM out of bound
Er 805	0x80	0x6202		FOE firmware upgrade failed
Er 806	0x80	0x6201		Saved ESI file does not match driver firmware

Er 811	0x10	0xA001	0x0011	Invalid EtherCAT transition request
		0xA00		Unknown EtherCAT state machine
Er 812	0x10	2	0x0012	transition request
Er 813	0x10	0x8213	0x0013	Protection request from boot state
Er 814	0x80	0x6203		Invalid firmware
E 045	0.40	0 0015	0 0015	Invalid mailbox configuration under boot
Er 815	0x10	0x8215	0x0015	state
Er 816	0x10	0x8216	0x0016	Pre-Op status is invalid for the mailbox
E1 010	UXIU	UXOZIO	UXUUIO	configuration
Er 817	0x10	0x8217		Invalid SyncManager configuration
Er 818	0x10	0x8211		No valid input data
Er 819	0x10	0x8212		No valid output data
Er 81A	0x10	0xFF02	0x871A	Synchronization error
Er 81b	0x10	0x821B	0x001B	SyncManager2 watchdog timer timeout
Er 81C	0x10	0x821C	0x001C	Invalid SyncManager type
Er 81d	0x10	0x821D	0x001D	Invalid output configuration
Er 81E	0x10	0x821E	0x001E	Invalid input configuration
Er 81f	0x10	0x821F		Watchdog configuration invalid
Er 821	0x10	0xA00	0x0021	Waiting for EtherCAT state machine Init
E1 021	0.010	3	UXUUZI	state
Er 822	0x10	0xA00	0x002	Waiting for the EtherCAT state machine
L1 022	UXIU	4	2	Pre-Op state
Er 823	0x10	0xA00	0x002	Waiting for master device for Safe-Op
21 020	OXIO	5	3	request
Er 824	0x10	0x8224	0x002	Invalid process data input mapping
			4	
Er 825	0x10	0x8225	0x002	RPDO mapping invalid (length, parameter
	0.40		5	not present, no this property)
Er 827	0x10	0x8227		Free running mode is not supported
Er 828	0x10	0x8228		Sync mode not supported
Er 82b	0x10	0x8210	0x002	Invalid inputs and outputs
			В	
Er 82C	0x10	0x872	0x002	Fatal synchronization error
		C 0072	C	
Er 82d	0x10	0x872	0x002	No synchronization error
		D	D	
Er 82E	0x10	0x872E	0x002 E	Synchronization cycle time is too short
			0x003	Invalid Distributed Clock synchronization
Er 830	0x10	0x8730	0 0 0 0 0	settings
			0x003	Distribution Clock phase-locked loop
Er 832	0x10	0x8732	2	failure
Er 833	0x10	0x8733		DC sync IO error
LI 000	UXIU	0.0733		Do sync to en or

Er 834	0x10	0x8734		DC sync timeout
Er 835	0x10	0x8735		Distribution Clock cycle time is invalid
Er 836	0x10	0x8736	0x003	Invalid Distribution Clock synchronization
E1 030	UXIU	0X0730	6	cycle time
Er 850	0x80	0x5550	0x005	EEPROM is inaccessible
E1 000	UXOU	UXSSSU	0	EEPROM IS MACCESSIBLE
Er 851	0x80	0x5551	0x0051	EEPROM error
Er 852	0,400	0,4555	0x005	Hardware is not ready
Er 832	0x80	0x5552	2	Hardware is not ready
F= 0/0	0x80	0xFF01		EtherCAT frame lost per unit time exceeds
Er 860	UX8U	UXFFUI		limit
F., 070	0,,00	0vE201		Driver can't be enabled under current
Er 870	0x80	0x5201		control mode

8.3 Alarm Handling

**When error occurs, please solve accordingly. Then, restart.

Error	Main	Sub	Display: "Er 0A0""Er 0A1"				
code	0A	0~1	Content: Circuit current detection error				
Cause			Diagnosis Solution				
Motor power cable wiring error		le wiring	Verify motor power cable wiring	Make sure U,V,W terminal wired properly			
Main power supply undervoltage		ly	Verify L1,L2,L3 terminal voltage	Increase main power supply voltage			
Driver fa	ault		/	Replace driver			

Error	Main	Sub	Display: "Er 0A3"				Display: "Er 0A3"		
code	0A	3	Content: Motor power cable n	Content: Motor power cable not connected					
Cause			Diagnosis	Solution					
Motor p	Motor power cable not		Verify motor power cable	fy motor power cable Measure resistance values betweer					
connect	connected		wiring U, V, W terminals, make sure the						
				values are almost equal. If not, might					
				be due to damaged motor or motor					
				winding open circuit.					
Motor fault			/	Replace motor					
Driver fa	Driver fault /		/	Replace driver					

Error	Main	Sub	Display: "Er 0b1" Content: Control circuit power supply abnormal			Display: "Er 0b1"		
code	0b	1						
Cause			Diagnosis Solution					
USB power supply too		ply too	Verify if USB cable is Replace USB mini cable					
low			properly connected					
			and not damaged.					
Driver f	ault		/	Replace driver				

Error	Main	Sub	Display: "Er Oc0"			
code Oc O Content: DC I		Content: DC bus overvoltage	ontent: DC bus overvoltage			
Cause			Diagnosis	Solution		
Main po	wer sup	ply	Verify L1,L2,L3 terminal voltage	Decrease main power supply		
overvol	tage			voltage		
Inner brake circuit			/	Replace driver		
damaged						
Driver fault			/	Replace driver		

Error	Main	Sub	Display: "Er OdO"		
code	0d	0	Content: DC bus undervoltage		
Cause			Diagnosis	Solution	
Main po	wer supp	ly	Vaniful 11 21 2 kannain al valta na	Increase main power supply	
undervo	ltage		Verify L1,L2,L3 terminal voltage	voltage	
L1C, L20	connect	ed	Control circuit power on before	Please disconnect the USB cable	
when USB cable is		is	driver initialization. Alarm might	arm might before powering on control	
connected			occur.	circuit.	
Driver f	ault		/	Replace driver	

Error	Main	Sub	Display: "Er Od1"			
code	0d	1	Content: Single phasing of main po	ower supply		
Cause			Diagnosis	nosis Solution		
Main po	wer supp	ly	Verify L1,L2,L3 terminal voltage	Increase main power supply		
undervo	ltage		Verify Li,Lz,L3 terminat voltage	voltage		
Main po	wer supp	ly	Lagrage connection of L1 L2 L2	Secure connections		
wiring error			Loose connection of L1, L2, L3	Secure connections		
Driver f	ault		/	Replace driver		

Error	Main	Sub	Display: "Er 0d2" Content: No main power supply detected		
code	0d	2			
Cause			Diagnosis	Solution	
				1. Increase main power supply	
No main	power s	upply	Verify L1,L2,L3 terminal voltage	voltage	
				2. Secure connections	
Driver fault			/	Replace driver	

Error Main Sub Display: "Er 0E0"					
Code 0 Content: Overcurrent					
Cause			Diagnosis	Solution	
Driver power output short circuit			Verify if there is short circuit between UVW terminals, or shorted to PG.	Make sure there is no circuit. Make sure motor is not damaged	
Motor w	iring erro	or	Verify motor wiring	Reconnect motor wiring	
IGBT mo	dule sho	rt	Disconnect motor output cable. Then, enable servo driver to check for overcurrent	Replace driver	
Excessi	ve motor	load	Verify if motor torque output is too high	1. Reduce load 2. Add a gearbox	
Excessive acceleration and deceleration			Verify if acceleration and deceleration duration time are too low Increase acceleration and deceleration duration time		
Motor wiring short circuit			Connect motor power cable to driver power output. Verify if resistance value of UVW to PE is equal and if there is short circuit		

Error	Main	Sub	Display: "Er 0E1"		
code	code 0E 1		Content: Intelligent Power Module	(IPM) overcurrent	
Cause			Diagnosis	Solution	
Driver power output short circuit			Verify if there is short circuit between UVW terminals, or shorted to PG.	Make sure there is no circuit. Make sure motor is not damaged	
Motor wiring error			Verify motor wiring	Reconnect motor wiring	
IGBT mo	dule sho	rt	Disconnect motor output cable. Then, enable servo driver to check for overcurrent	Replace driver	
IGBT mo			/	Replace driver	
Excessi	Excessive motor load		Verify if motor torque output is too high	1. Reduce load 2. Add a gearbox	
	Excessive acceleration and deceleration		Verify if acceleration and deceleration duration time are too low	Increase acceleration and deceleration duration time	
Motor w	riring sho	rt	Connect motor power cable to driver power output. Verify if resistance value of UVW to PE is equal and if there is short circuit	Replace motor	

Error	Main	Sub	Display: "Er 0E2"			
code	0E	2	Content: Power output to motor sh	norted to ground		
Cause			Diagnosis	Solution		
Driver U, V, W terminals shorted to ground			Disconnect motor power cable and check for short circuit between driver UVW and PE 1. Reconnect wiring. 2. Change motor power cable.			
Motor shorted to ground			Connect motor power cable to driver power output. Verify if resistance value of UVW to PE is in the range of MegaOhm (MΩ)	Replace motor		
Driver fault			/	Replace driver		

Error	Main	Sub	Display: "Er 0E4"			
code	0E	2	Content: Phase overcurrent			
Cause			Diagnosis	Solution		
Driver U, V, W terminals shorted to ground			Disconnect motor power cable and check for short circuit between driver UVW and PE 1. Reconnect wiring. 2. Change motor power cable.			
Motor shorted to ground			Connect motor power cable to driver power output. Verify if resistance value of UVW to PE is equal and if there is short circuit	Replace motor		
Driver fault			/	Replace driver		

Error	Main	Sub	Display: "Er 0F0" Content: Driver overheated		Display: "Er 0F0"	
code	0F	0				
Cause			Diagnosis	Solution		
Temperat	Temperature of power		Measure the temperature	1. Improve cooling condition. Please		
module e	xceeded	d upper	of driver radiator.	check installation guide;		
limit				2. Replace driver and motor with		
				higher power rating;		
				3. Increase duration time for		
				acceleration and deceleration;		
				4. Decrease load		

Error	Main	Sub	Display: "Er 100"		
code	10	0	Content: Motor overloaded		
Cause		Diagno	osis	Solution	
Load too h			if actual load exceeds um value allowed	Decrease load Adjust limit values	
mechanical		Look for mechanical vibration from machine system		Adjust gain value of control loop Increase duration time for acceleration and deceleration	
Motor or encoder cable wiring error		Verify motor and encoder wiring		Reconnect wiring Replace motor and encoder cable	
Holding br	rake	Verify	holding brake terminal voltage	·	

Error	Main	Sub	Display: "Er 102"		
code 10		2	Content: Motor rotor blocked		
Cause		Diagno	osis	Solution	
Motor rotor blocked		Look fo	or mechanical blockages	Check the machinery	
Motor rotor		Verify	value of Pr6.57	Adjust value of Pr6.57	

Error	Main	Sub	Display: "Er 120"		
code	12	0	Content: Regenerative resistor overvoltage		
Cause	Cause Diagnosis		Diagnosis	Solution	
Regenerative energy exceeded capacity of regenerative resistor		of	Verify if velocity is too high Verify if load is too large	Decrease motor rotational velocity; Decrease load inertia; Add an external regenerative resistor;	
Power sup too high	oply volt	age	Verify if power supply voltage is within the rated range. Interval regenerative resistor value is too low	Decrease power supply voltage Increase regeneration resistance value(add external regenerative resistor)	
Unstable p	oower s	upply	Verify if power supply voltage is stable	Add a surge suppressor to main power supply.	
Regenera discharge damaged		rgy	/	Add an external regenerative resistor; Replace driver	

Error	Main	Sub	Display: "Er 121"		
code	12	1	Content: Holding brake error		
Cause			Diagnosis Solution		
Holding	Holding brake circuit		Regenerative resistor disconnected	Replace regenerative resistor	
damaged			Holding brake IGBT damaged	Replace driver	

Error	Main	Sub	Display: "Er 122"		
code	12	2	Content: Regenerative resistor value too low		
Cause			Diagnosis Solution		
resistor v than the n	External regenerative resistor value is less than the minimum value allowed by the drive		/	Replace the regenerative resistor with the right resistance value which meets the specification of the driver	

Error								
code	15	0	Content: Encoder disconnected					
Cause			Diagnosis	Solution				
Encoder c			Verify encoder cable connection	Make sure encoder cable properly connected				
Encoder cable wiring error			Verify if encoder wiring is correct	Reconnect encoder wiring				
Encoder damaged			/	Replace motor				
Encoder measuring circuit damaged			/ Replace driver					

Error	Main	Sub	Display: "Er 151"		
code 15		1	Content: Encoder communication error		
Cause			Diagnosis	Solution	
Encoder v	vire shie	lding	Verify if encoder cable has	Replace with standard encoder	
layer is missing			shielding layer	cable	
Encoder cable wiring			Verify if encoder wiring is correct	Reconnect encoder wiring	
error			verify if effective withing is correct	Reconnect encoder wiring	
Encoder d	amaged		/	Replace motor	

Error	Main	Sub	Display: "Er 152"			
code	15	2	Content: Encoder initial position er	Content: Encoder initial position error		
Cause			Diagnosis	Solution		
Communication data abnormal			Verify if encoder power supply oltage is DC5V ± 5%; . Verify if encoder cable and shielded ayer is not damaged; . Verify if encoder cable is close to igh-powered power supply cable 1. Make sure encoder cable is damaged. 3. Make sure encoder cable is layer is grounded to frame 4. Make sure encoder cable is from high-powered power sucable			
Encoder	Encoder damaged		/	Replace motor		
Encoder circuit d	measuri amaged	ng	1	Replace driver		

Error	Main	Sub	Display: "Er 153"			
code	15	3	Content: Multiturn encoder error			
Cause	Cause		Diagnosis	Solution		
Initial use			Origin calibration not performed Perform origin positioning and multiturn position initialization, calibrate the origin coordinate system.			
	r without n absolut	te	Verify if encoder has multiturn absolute function	1. Replace the motor with a multiturn absolute encoder. 2. Set Pr0.15 = 0 to deactivate multiturn absolute function.		
Low bat	tery pow	er	Replace battery and restart driver to clear alarm	Replace battery		
	has no po een dism		Alarm not cleared after replacing battery and restart	Absolute position lost. Return to origin and perform multiturn initialization, calibrate the origin of coordinate system		

Error	Main	Sub	Display: "Er 154" Content: Encoder parameter settings error		
code	15	4			
Cause			Diagnosis	Solution	
Absolute encoder mode is incorrectly set.			Verify if encoder has multi-turn absolute value function.	Modify absolute encoder mode settings	

Error	Main	Sub	Display: "Er 155"			
code	15	5	Content: Encoder data overflow			
Cause			Diagnosis	Solution		
Encoder data overflow			Verify if encoder is not damaged	Initialize multiturn data		
Absolute value applications, motor rotates in one direction			Verify if encoder is not damaged	Adjust absolute value application mode, set to turntable mode		

Error	Main	Sub	Display: "Er 156"		
code	15	6	Content: Encoder overheated		
Cause	Cause		Diagnosis	Solution	
The enc	The encoder		Verify if motor temperature is	Deduce encoder temperature	
tempera	temperature is too high.		too high	Reduce encoder temperature.	

Error	Main	Sub	Display: "Er 157"			
code	15	7	Content: Encoder counter error			
Cause			Diagnosis	Solution		
Encoder data overflow		erflow	Verify if encoder is not damaged	Initialize multiturn data		
Absolute value applications, motor rotates in one direction			Verify if encoder is not damaged	Adjust absolute value application mode, set to turntable mode		

Error	Main	Sub	Display: "Er 170"	
code	17	0	Content: Encoder data error	
Cause		Diag	nosis	Solution
Communication data abnormal		volta 2. Ve layer 3. Ve high-	rify if encoder power supply ge is DC5V ± 5%; rify if encoder cable and shielded is not damaged; rify if encoder cable is close to powered power supply cable	1. Make sure encoder power supply voltage is stable 2. Make sure encoder cable is not damaged. 3. Make sure encoder cable shielded layer is grounded to frame 4. Make sure encoder cable is away from high-powered power supply cable
Encoder	coder damaged		/	Replace motor
Encoder circuit da	measurir amaged	ng	/	Replace driver

Error	Main Sub		Display: "Er 171"		
code	17	1	Content: Encoder parameter initialization error		
Cause	Cause Dia		nosis	Solution	
	Driver and motor not matched		y driver and motor models.	Replace with matching driver and motor	
Error while getting parameters from encoder		g 2. Ve insul	rify if encoder cable is standard. rify if encoder has no peeled ator, broken connection or oper contact.	Use standard encoder cable, verify the connection of both sides of driver and motor, change encoder cable if necessary	

Error	Main	Sub	Display: "Er 180"			
code	18	0	Content: Excessive position deviation			
Cause			Diagnosis	Solution		
Improper position deviation settings			Verify if value of Pr_014 is too low	Increase value of Pr_014		
Position gain setting too low			Verify if values of Pr1.00 & Pr1.05 are Increase values of Pr1.00 & Pr1.05			
Torque limit too low			Verify if values of Pr0.13 & Pr5.22 are too low Increase values of Pr0.13 & Pr5.22			
Excessive external load			1. Verify if acceleration and deceleration duration time is too low. 2. Verify if rotational velocity is too high 3. Verify if load is too large	1. Increase duration time for acceleration and deceleration 2. Decrease rotational velocity 3. Decrease load		

Error	Main	Sub	Di	Display: "Er 181"			
code	18	1	C	Content: Excessive velocity deviation			
Cause				Diagnosis	Solution		
Deviation between set velocity and actual velocity is too great			is	Verify if value of Pr6.02 is too low	 Increase value of Pr6.02; Set Pr6.02 to 0, position error detection off. 		
Acceleration and deceleration duration time for set velocity is too low				Verify if value of Pr3.12 and Pr3.13 are too low	Increase value of Pr3.12, Pr3.13; Adjust velocity gain to reduce velocity lag error		

Error	Main	Sub	Display: "Er 190" Content: Motor vibration too strong		
code	19	0			
Cause			Diagnosis	Solution	
Motor velocity fluctuates		ıctuates	Verify if Pr0.03 is too large	Decrease value of Pr0.03	
too much					

Error Main 1A		Sub	Display: "Er 1A0"		
		0	Content: Overspeed		
Cause Diagnosis				Solution	
Motor velo exceeded speed limi (Pr3.21)	first	2. Veri voltage 3. Veri 4. Veri freque	y if velocity command is too high; fy if simulated velocity command e is too high; fy if parameter value of Pr3.21 is too low; fy if input frequency and division ncy coefficient of pulse train is proper; fy if encoder is wired correctly	1. Adjust velocity input command; 2. Increase Pr3.21 value; 3. Adjust pulse train input frequency and division frequency coefficient; 4. Verify encoder wiring;	

Error	Main	Sub	Display: "Er 1A1"			
code	1A	1	Content: Velocity out of control			
Cause	Cause Diagnosis			Solution		
out of con Excessive	Motor velocity out of control, Excessive velocity error		Reconnect UVW if wrongly connected. If still remains unsolved, please contact technical support.			

Error	Main	Sub	Display: "Er 1b0"	
code	1b	0	Content: Bus input signal di	thering
Cause			Diagnosis	Solution
			Synchronization offset on the controller is set too high Set synchronization offset to 0 and che if dithering stops	
	Controller synchronization dithering		Synchronization cycle is too short due to large number of slave stations Set a reasonable synchronization cycle time.	
			ng Tune synchronization	
			Command delay cycle counts in sync mode needs to be adjusted Set PA0.27 = 2 to increase delay t	

Error	Main	Sub	Display: "Er 1b1"			
code	1b	1	Content: Incorrect electronic gear ratio			
Cause			Diagnosis	Solution		
Values out of range			Numerator or denominator is zero/Set values out of range	Reduce number of pulses per revolution		

Error	Main	Sub	Display: "Er 1c0"	Display: "Er 1c0"		
code	1c	0	Content: Both STO failed			
Cause			Diagnosis Solution			
Both STO input signals			Verify if STO power supply is normal	Verify 24V STO power supply and power cable connection		
valid			Disconnect switch connected to STO	Close switch		

Error	Main	Sub	Display: "Er 1c1"			
code	1c	1	Content: 1st STO failed			
Cause			Diagnosis Solution			
1st STO input signal			Verify if STO power supply is normal	Verify 24V STO power supply and power cable connection		
valid			Disconnect switch connected to STO	Close switch		

Error	Main	Sub	Display: "Er 1c2"	Display: "Er 1c2"		
code	1c	2	Content: 2nd STO failed			
Cause			Diagnosis Solution			
2nd STO input signal			Verify if STO power supply is normal	Verify 24V STO power supply and power cable connection		
valid			Disconnect switch connected to STO	Close switch		

Error	Main	Sub	Display: "Er 1c3"			
code	1c	3	Content: STO power supply 1 anomaly			
Cause			Diagnosis	Solution		
STO power supply 1 undervoltage/ overvoltage			Verify issue by restarting for a few times	Please contact manufacturer.		
Drive power supply not stable			Check if there is fluctuation in the main power supply.	Add an external voltage stabiliser.		

Error	Main	Sub	Display: "Er 1c4"			
code	1c	4	Content: STO power supply 2 anomaly			
Cause			Diagnosis	Solution		
STO power supply 2 undervoltage/ overvoltage			Verify issue by restarting for a few times	Please contact manufacturer.		
Drive power supply not stable			Check if there is fluctuation in the main power supply.	Add an external voltage stabiliser.		

Error	Main	Sub	Display: "Er 1c5"		
code	1c	5	Content: STO input circuit 1 anomaly		
Cause			Diagnosis Solution		
STO input circuit 1 anomaly		1	Verify issue by restarting for a few times	, , bleace contact manificatilite	

Error	Main	Sub	Display: "Er 1c6"			
code	1c	6	Content: STO input circuit 2 anomaly			
Cause			Diagnosis Solution			
STO input circuit 2 anomaly			Verify issue by restarting for a few times Please contact manufacturer.			

Error	Main	Sub	Display: "Er 1c7"			Display: "Er 1c7"	
code	1c	7	Content: STO circuit BUFFER 1 anomaly				
Cause	Cause Diagnosis			Solution			
STO circuit BUFFER 1 anomaly		ER 1	Verify issue by restarting for a few times Please contact manufacturer.				

Error	Main	Sub	Display: "Er 1c8"			
code	1c	8	Content: STO circuit BUFFER 2 anomaly			
Cause			Diagnosis Solution			
STO circuit BUFFER 2 anomaly		ER 2	Verify issue by restarting for a few times	Please contact manufacturer.		

Error	Main	Sub	Display: "Er 210"			
code	21	0	Content: I/O input interface assignment error			
Cause			Diagnosis	Solution		
Input signal assigned with			Verify values of Pr4.00-Pr4.09,	Set proper values for		
two or mo	re funct	ions.	Pr4.44-4.47	Pr4.00-Pr4.09, Pr4.44-4.47		

Error	Main	Sub	Display: "Er 211"		
code	21	1	Content: I/O input interface function assignment error		
Cause			Diagnosis	Solution	
Input signal assignment			Verify values of PA4.00-PA4.09, Set proper values for		
error			PA4.44-4.47	PA4.00-PA4.09, PA4.44-4.47	

Error	Main	Sub	Display: "Er 212"	Display: "Er 212"		
code	21	2	Content: I/O output interface function assignment error			
Cause			Diagnosis	Solution		
Input signal assigned with two or more functions.			Verify values of PA4.10-PA4.15	Set proper values for PA4.10-PA4.15		
Input signal not assigned			Verify values of PA4.10-PA4.15	Set proper values for PA4.10-PA4.15		

Error	Main	Sub	Display: "Er 240"		
code	24	0	Content: EEPROM parameters initialization error		
Cause			Diagnosis Solution		Solution
Error during initial reading of EEPROM parameters				ny ne	If parameter not saved after several restarts, please change driver

Error	Main	Sub	Display: "Er 241"	Display: "Er 241"		
code	24	1	Content: EEPROM hardware error			
Cause			Diagnosis	Solution		
EEPROM damaged			Verify if multiple storages are the same	Replace driver/Upgrade software		

Error	Main	Sub	Display: "Er 242"		
code	24	2	Content: Error saving alarm history record		
Cause			Diagnosis	Solution	
Power-off during saving		saving	Verify alarm during power-off	Power lost after alarm appears	
Several different alarms			Verify alarm code	Figure out other alarm causes	
in a row			verify atariff code		

EEPROM	damaged	Verify if it is the same over Replace driver/Upgrade software
EEPROM (uailiageu	several times

Error	Main	Sub	Display: "Er 243" Content: Error occurred when saving vendor parameters		
code	24	3			
Cause			Diagnosis	Solution	
Power-off before data saved		data		Wait until data saved successfully before powering off	
EEPROM damaged		d	Restart driver for a few times Restart driver for a few times		

Error	Main	Sub	Display: "Er 244" Error description: Error occurred when saving communication		
code	24	4			
Cause			Diagnosis	Solution	
Power-off	before	data		Wait until data saved successfully	
saved				before powering off	
EEPROM damaged			Restart driver for a few times	Restart driver for a few times	

Error	Main	Sub	Display: "Er 245" Error description: Error occurred when saving parameter 402		
code	24	5			
Cause	Cause		Diagnosis	Solution	
Power-off before data saved		data		Wait until data saved successfully before powering off	
EEPROM damaged		d	Restart driver for a few times	Restart driver for a few times	

Error	Main	Sub	Display: "Er 246"		
code 24		6	Error description: Data saving error during power-off		
Cause	Cause		Diagnosis	Solution	
Power off too fast				Upgrade software	
EEPROM damaged			Restart driver for a few times	Restart driver for a few times	

Error	Main	Sub	Display: "Er 260"		
code	26	0	Error description: Positive/Negative non-homing mode	position limit triggered under	
Cause			Diagnosis	Solution	
Positive/negative			Verify position limit signal	/	
position limit triggered				/	

Error	Main	Sub	Display: "Er 280"			
code 28		0	Error description: Output pulse frequency too high			
Cause			Diagnosis	Solution		
Frequenc	y divide	d pulse	Verify if motor rotational speed	Reduce the number of		
output ex	ceeds 1	MHz	and the number of frequency frequency divided pulse output			
			divided pulse output are too high	or reduce rotational speed		

Error

code	57	0	Error description: Forced alarm input valid		
Cause			Diagnosis	Solution	
Forced alarm input		out	Verify forced alarm input	Verify if the input wiring connection	
signal occurred			signal	is correct	

Error	Main	Sub	Display: "Er 5F0"		
code 5F 0 Content: Motor model no. detection error				n error	
Cause			Diagnosis	Solution	
Automatio	Automatically detected			Please contact our technical	
motor doesn't match			/	support	
set motor	set motor				

Error	Main	Sub	Display: "Er 5F1"			
code	5F	1	Error description: Driver power module detection error			
Cause			Diagnosis	Solution		
Driver power rating not			Restart driver	Please contact our technical		
within range.				support		

Error	Main	Sub	Display: "Er 600"		
code	60	0	Error description: Main loop interrupted timeout		
Cause			Diagnosis	Solution	
The motor control loop calculation time			Check for interference from devices releasing electromagnetic field	Ground driver and motor to reduce interference	
overflow			Restart driver	Replace driver	

Error	Main	Sub	Display: "Er 601"			
code	60	1	Error description: Velocity loop interrupted timeout			
Cause			Diagnosis	Solution		
Motor control loop calculation time overflow			Verify if encoder connection is and that the encoder cable is too not long (more than 20 meters)	Replace encoder cable if necessary		
			Restart driver	Replace the drive with a new one		

Error	Main	Sub	Display: "Er 700"				
code	70	0	Error description: Encryption error				
Cause			Diagnosis Solution				
Encryption error			Restart driver	Please contact our technical			
during initialization				support			
upon power-on.							

8.4 Alarm clearing

8.4.1 Servo Drive Alarm

For alarm can be cleared, There are 3 method.

Method 1:

1. By setting bit 7 of 6040h to 1, switches state machine from fault to initialization completion , No fault(Switch on disabled).

Method 2:

Use auxiliary function "AF_ACL"

 Press M to select auxiliary function , Press SET to enter into "AF_ACL" , Press and hold to clear the alarm

Method 3:

Set IO input function as Alarm clear input " (A-CLR)", refer to switch input interface connection to clear the alarm.

8.5 EtherCAT Communication Alarm

EtherCAT communication related alarms are erasable and will not be recorded in alarm history.

Clearing EtherCAT communication alarm is similar to clearing servo driver alarm. Please clear the alarm before switching to 402 machine state.

EtherCAT communication alarm however, relies on register clearance from the main station. Can be solved according to following steps:

- 1、Set bit 4 of ESC control register 0x120 (error responder) to 1.
- 2. The communication alarm can be cleared until the feedback of the ESC status code register 0x134-0x135 is 0.
- 3. By setting bit 7 of 6040h to 1, switches state machine from fault to initialization completion , No fault(Switch on disabled).

Error	Main	Sub	Display: "Er 73A"				
code	73	Α	Error description: SyncManager2 lost				
Cause			Diagnosis	Solution			
Poor master			Increase the alarm				
performa	performance			threshold			
Single-unit drive has		has	Is it a single unit or multiple units together	Switch drive			
problem			in the network				
Interfere			Check the grounding and network wiring	Replace the network			
Interfere			quality	cable			

Error	Main	Sub	Display: "Er 73b"			
code	73	В	Error description: SYNC0 lost			
Cause			Diagnosis	Solution		
Poor master			Increase threshold val			
performance			limit			
Single-unit drive has		has	Is it a single unit or multiple units together Switch drive			
problem			in the network			
into of our			Check the grounding and network wiring	Replace the network		
interfere	interfere		quality	cable		

Error	Main	Sub	Display: "Er 73c"				
code	73	С	Error description: Excessive	Error description: Excessive Distributed Clock error			
Cause			Diagnosis	Solution			
Poor mas	Poor master device			Increase threshold value limit			
performa	nce						
Single-unit drive has problem		has	Is it a single unit or multiple units together in the network	Replace driver			
interfere			Check the grounding and network wiring quality	Replace network cable			

Error	Main	Sub	Display: "Er 801"	
code	80	1	Error description: Unknown communication error	
Cause			EtherCAT state machine transition failed	
The stat	us of th	е	All ESM status	
error ca	n be de	tected		
The model of the			The current state is maintained below the safe operation, and the	
The result status		IS	operation state is switched to the safe operation state	
Calutian			Verify network connection and master device EtherCAT state machine	
Solution	1		transition order	

Error	Main	Sub	Display: "Er 802"	
code	80	2	Error description: Memory overflow	
Cause			CPU failed to request memory	
The status of the		е	All ESM status	
error can be detected		tected		
The result status		ıs	The current state is maintained below the safe operation, and the operation state is switched to the safe operation state	
Solution			Verify if EL7-EC hardware is faulty	

Error	Main	Sub	Display: "Er 803"	
code	80	3	Error description: RAM out of bound	
Cause			EtherCAT state machine memory address access request from master	
			device is out of bound	
The status of the		е	All communication status	
error can be detected		tected		
The result status		IS	NO	
Solution			Verify master device configuration or replace master device	

Error	Main	Sub	Display: "Er 805"	
code	80	5	Error description: FOE firmware upgrade failed	
Cause	Cause		Firmware burn error	
The stat	The status of the		BOOT	
error can be detected		tected		
The result status		IS	Remain in the detection state	
Solution			Replace firmware/driver	

Error	Main	Sub	Display: "Er 806"	
code	80	6	Error description: Saved ESI file does not match driver firmware	
Cause	Cause		ESI file does not match driver firmware	
The status of the		е	INIT	
error can be detected		tected		
The result status		IS	Remain in the detection state	
Solution	1		Burn matching firmware to driver	

Error	Main	Sub	Display: "Er 811"	
code	81	1	Error description: Invalid EtherCAT transition request	
Cause			Driver received unconvertible request from EtherCAT state machine	
The stat	The status of the		All ESM Status	
error can be detected		tected		
The result status		ıs	The current state is maintained below the safe operation, and the operation state is switched to the safe operation state	
Solution			Verify if the transition information from master device is correct	

Error	Main	Sub	Display: "Er 812"		
code	81	2	Error description: Unknown EtherCAT state machine transition request		
Cause			Driver receives a transition request other than states of the EtherCAT		
			state machine		
The stat	The status of the		All ESM Status		
error can be detected		tected			
The result status		ıc	The current state is maintained below the safe operation, and the		
The result status		15	operation state is switched to the safe operation state		
Solution			Verify transition information from master device		

Error	Main	Sub	Display: "Er 813"	
code	81	3	Error description: Protection request from boot state	
Cause	Cause		Driver receives a transition request to boot state	
The status of the		е	Initialize the conversion to a boot	
error can be detected		tected		
The result status		IS	initialization	
Solution			Verify if driver software version supports this state transition	

Error	Main	Sub	Display: "Er 814"
code	81	4	Error description: Invalid firmware
Cause			Firmware not matched with driver
The stat	us of th	е	B00T/INIT
error can be detected			
The result status			Keeping in the detection status
Solution			Return driver to supplier to update firmware

Error	Main	Sub	Display: "Er 815"
code	81	5	Error description: Invalid mailbox configuration under boot state
Cause			Boot state action not supported under current configuration
The stat	us of th	е	Initialize the conversion to a boot
error can be detected			
The result status			Initialization
Solution			Verify if EL7-EC software version supports action under this state.

Error	Main	Sub	Display: "Er 816"
code	81	6	Error description: Pre-Op status is invalid for the mailbox configuration
Cause			The synchronization manager configuration under Pre-Op is invalid
The status of the			pre-operation
error can be detected			
The result status		IS	initialization
Caladian			1. Verify if XML file version is consistent with software version
Solution	Solution		2. EtherCAT slave controller error, please contact technical support

Error	Main	Sub	Display: "Er 817"
code	81	7	Error description: Invalid SyncManager configuration
Cause			Synchronization manager configuration is invalid
The status of the			Pre-op above
error can be detected			
The result status			Pre-op
Solution			Verify master device configuration/ESI file version

Error	Main	Sub	Display: "Er 818"
code	81	8	Error description: No valid input data
Cause			The input data is not updated for more than 1 second
The stat	us of th	е	All ESM status
error ca	n be de	tected	
T			The current state is maintained below the safe operation, and the
ine resi	The result status		operation state is switched to the safe operation state
C 1 1:			1. Verify if TxPDO is valid
Solution	Solution		2. Verify master device synchronization settings

Error	Main	Sub	Display: "Er 819"
code	81	9	Error description: No valid output data
Cause			Output data is not updated for more than 1 second
The stat	us of th	е	All ESM status
error ca	n be de	tected	
T			The current state is maintained below the safe operation, and the
ine resi	The result status		operation state is switched to the safe operation state
C 1 1:			1. Verify if RxPDO is valid
Solution	Solution		2. Verify master device synchronization settings

Error	Main	Sub	Display: "Er 81A"
code	81	Α	Error description: Synchronization error
Cause			RxPDO and DC update order failed or one of them is not updated in sync
The stat	us of th	е	All ESM status
error ca	n be de	tected	
T			The current state is maintained below the safe operation, and the
ine resi	The result status		operation state is switched to the safe operation state
Solution			1. Verify if PXPDO is valid
			2. Verify master device synchronization settings

Error	Main	Sub	Display: "Er 81b"
code	81	b	Error description:SyncManager2 watchdog timer timeout
Cause			The RxPDO update timeout in operational state
The status of the			operation
error can be detected			
The result status			Safe operation
Solution			1. Verify if EL7EC network is connected
			2. Verify RxPDO update time

Error	Main	Sub	Display: "Er 81c"	
code	81	С	Error description: Invalid SyncManager type	
Cause			Synchronization Manager configuration types other than the following:	
			1. Email output	
			2. Email input	
			3. Process data output	
			4. Process data input	
The stat	The status of the		Pre-operation	
error can be detected		tected		
The result status		IS	Initialize	
Solution	1		Verify if XML file version is consistent with software version	

Error	Main	Sub	Display: "Er 81d"
code	81	d	Error description: Invalid output configuration
Cause			Process data output synchronization manager configuration is invalid
The status of the			Pre-operation
error can be detected			
The result status		IS	Initialize
Solution			1. Verify EL7EC synchronization manager configuration
		2. Verify if XML file version is consistent with software version	

Error	Main	Sub	Display: "Er 81E"	
code	81	Е	Error description: Invalid input configuration	
Cause			Process data input synchronization manager configuration is invalid	
The status of the			Pre-operation	
error can be detected				
The result status		IS	Initialize	
Caladian			1. Verify EL7EC synchronization manager configuration	
Solution	Solution		2. Verify if XML file version is consistent with software version	

Error	Main	Sub	Display: "Er 821"
code	82	1	Error description: Waiting for EtherCAT state machine Init state
Cause			Driver waiting for master device to send Init request
The status of the			All ESM status
error can be detected		tected	
The result status		ıs	Keeping the current state
Solution			

Error	Main	Sub	Display: "Er 822"
code	82	2	Error description: Waiting for the EtherCAT state machine Pre-Op state
Cause			Driver waiting for master device to send Pre-Op request
The status of the			Safe operation, operation
error can be detected			
The result status			Keeping the current state
Solution			Verify transition request sent from master device

Error	Main	Sub	Display: "Er 823"
code	82	3	Error description: Waiting for master device for Safe-Op request
Cause			Process data output synchronization manager configuration is invalid
The status of the			Operation
error can be detected			
The result status			Keeping the current state
Solution			Verify transition request sent from master device

Error	Main	Sub	Display: "Er 824"
code	82	4	Error description: Invalid process data input mapping
Cause			TxPDO is configured with non-mappable objects
The status of the			Safe operation
error can be detected			
The result status			Pre-operation
Solution			Reconfigure the TxPDO mapping object

Error	Main	Sub	Display: "Er 825"
code	82	5	Error description: Invalid process data output mapping
Cause			RxPDO is configured with non-mappable objects
The status of the			Safe operation
error can be detected			
The result status			Pre-operation
Solution		Solution Reconfigure the RxPDO mapping object	

Error	Main	Sub	Display: "Er 828"	
code	82	8	Error description: Sync mode not supported	
Cause			Sync mode is not supported in the current configuration	
The status of the			Safe operation	
error ca	n be de	tected		
The resu	The result status		Pre-operation	
Calutian			1. Verify L7EC software version	
Solution	Solution		2. Verify XML version	

Error	Main	Sub	Display: "Er 82b"
code	82	b	Error description: Invalid inputs and outputs
Cause			No RxPDO and TxPDO updates for more than 1 second
The stat	us of th	е	All ESM status
error ca	n be de	tected	
The result status			The current state is maintained below the safe operation, and the operation state is switched to the safe operation state
Solution			Verify if current RxPDO and TxPDO are invalid Verify master device synchronization settings

Error	Main	Sub	Display: "Er 82c"
code	82	С	Error description: Fatal synchronization error
Cause			DC watchdog timer timeout
The stat	us of th	е	Safe operation, operation
error can be detected		tected	
The resu	The result status		Safe operation
Calutian			1. Verify if EL7-EC hardware is faulty
Solution		2. Verify DC setting and delay	

Error	Main	Sub	Display: "Er 82d"	
code	82	d	Error description: No synchronization error	
Cause			Synchronization is invalid	
The status of the			operation	
error can be detected				
The result status			Safe operation	
Solution			1. Verify if "fatal synchronization error" has occurred. 2. Verify master device synchronization settings	

Error	Main	Sub	Display: "Er 82E"
code	82	Е	Error description: Synchronization cycle time is too short
Cause			Master device synchronization cycle time is set to less than 125
			microseconds
The stat	us of th	е	operation
error ca	n be de	tected	
The result status		IS	Pre-operation
Solution			Verify master device synchronization cycle time

Error	Main	Sub	Display: "Er 830"	
code	83	0	Error description: Invalid Distributed Clock synchronization settings	
Cause			Synchronization settings in sync mode are not valid	
The status of the			Safe operation	
error can be detected		tected		
The result status			Pre-operation	
Solution			olution Verify master device synchronization settings	

Error	Main	Sub	Display: "Er 832"
code	83	2	Error description: Distribution Clock phase-locked loop failure
Cause			Distribution Clock phase-locked loop setting is invalid
The status of the			Safe operation, operation
error can be detected		tected	
The result status		IS	Safe operation
Solution		Verify master device Distribution Clock settings and network transmission delay	

Error	Main	Sub	Display: "Er 835"
code	83	5	Error description: Distribution Clock cycle time is invalid
Cause			Set synchronization cycle time is not proportional to drive position loop
The status of the			Safe operation
error can be detected		tected	
The result status		IS	Pre-operation
Solution			Refer to user manual to set a reasonable synchronization cycle time.

Error Main Sub		Sub	Display: "Er 836"	
code	83	6	Error description: Invalid Distribution Clock synchronization cycle time	
Cause			The synchronization cycle time setting is not as the following	
			1:125us 2:250us 3:500us	
			4 : 750us 5 : 1000us 6 : 2000us	
			7 : 4000us	
The status of the			Safe operation	
error can be detected				
The resu	The result status		Pre-operation	
Solution Verify master device synchronization cycle time		Verify master device synchronization cycle time		

Error	Main	Sub	Display: "Er 850"	
code	85	0	Error description: EEPROM is inaccessible	
Cause			EtherCAT slave controller failed to access EEPROM	
The status of the		е	All ESM status	
error can be detected		tected		
The result status		IS	Keeping the current state	
Solution			1. Verify if EL7EC hardware is faulty	
Solution			2. Verify if master device released access	

Error	Main	Sub	Display: "Er 851"	
code	85	1	Error description: EEPROM error	
Cause			EEPROM operation of EtherCAT slave controller failed	
The status of the			All ESM status	
error can be detected		tected		
The result status		IS	Keeping the current state	
Solution			Verify if master device released access	

Error	Main	Sub	Display: "Er 852"	
code	85	2	Error description: Hardware is not ready	
Cause			Data communication lost	
The status of the			All ESM status	
error can be detected				
The result status			Keeping the current state	
Solution			Verify if EL7-EC hardware is faulty	

Error	Main	Sub	Display: "Er 860"	
code	86	0	Error description: EtherCAT frame lost per unit time exceeds limit	
Cause			EtherCAT frame lost per unit time exceeds the setting in 2635-00h	
The status of the			All status	
error can be detected				
The result status			Keeping the detection state	
Solution			Change to network cable with higher bandwidth / Replace driver	

Error	Main	Sub	Display: "Er 870"	
code	87	0	Error description: Driver can't be enabled under current control mode	
Cause			Enable driver under unsupported mode	
The status of the			All status	
error can be detected				
The result status			Maintain status	
Solution			Switch to the correct control mode	

Error	Main	Sub	Dis	Display: "Er 890"		
code	89	0	Err	ror description: Homing Error		
Cause				Diagnosis	Solution	
Homing	velocity	y too hig	jh.	Verify if homing velocity is	Decrease homing velocity or	
Passed	homing	sensor		too high. Or set lower	increase homing acceleration	
before s	ignal is	capture	ed	homing velocity		
				Verify if input signal from	Set up the signal input in	
Homing	mode is	s not		sensors are corresponding	accordance to homing mode	
coincide with input signals				to the demands of chosen	settings	
				homing mode		
Unsupported homing				Verify if improper homing	Re-select homing mode	
mode	oi tea na	nning		mode is set in object		
mode			dictionary 6098h			

About Us

Leadshine Technology Co., Ltd.

Headquarters

Address:

15-20/F, Block B, Nanshan I Valley, No.3157, Nanshan District, Shenzhen City, Guangdong Province, China

Tel:

+86 755 26411692

Fax:

+86 755 26402718

Website:

www.leadshine.com

Emails:

sales@leadshine.com

Leadshine Global Retailers Network

Get in touch with us or any of your local Leadshine certified retailers by visiting our global website.

Technical Support

Tel: 86-755-2641-8447

86-755-2641-8774 (Asia, Australia, Africa) 86-755-2665-5136 (North and South America)

86-755-8654-2465 (Europe)

Fax: 86-755-2640-2718
Email: tech@leadshine.com

Sales Hot Line

Tel: 86-755-2641-7674 (Asia, Australia, Africa) 86-755-2641-7617 (North and South America) 86-755-2640-9254 (Europe)

Email: sales@leadshine.com

Leadshine Overseas

Leadshine America, Inc.

North America

Office

Address:

26050 Towne

Centre Dr.

Foothill

Ranch California

United States

Tel:

1-949-608-7270

Fax:

1-949-638-7298

Website:

www.leadshineus

<u>a.com</u>

Emails:

sales@leadshin eusa.com